1.UFO,百慕大,和一些类似神秘的事告诉我

2.CO2的扑集和封存(CCS)技术有哪些

3.欧佩克对石油工业的有什么影响?

4.欧美多国也在经历一场大范围的电荒,什么原因引发了这场能源危机?

5.什么是低碳生活?

6.比尔·盖茨的储能方案能否取代锂离子电池?

UFO,百慕大,和一些类似神秘的事告诉我

油气田应对极端天气的措施_油气田应对极端天气

“百慕大魔鬼三角”名称的由来,是1945年12月5日美国19飞行队在训练时突然失踪,当时预定的飞行计划是一个三角形,于是人们后来把美国东南沿海的西太平洋上,北起百慕大,延伸到佛罗里达州南部的迈阿密,然后通过巴哈马群岛,穿过波多黎各,到西经40线附近的圣胡安,再折回百慕大,形成一个三角地区,从此被称为百慕大三角区或“魔鬼三角”。在这个地区,已有数以百计的船只和飞机失事,数以千计的人在此丧生。从1880到1976年间,约有158次失踪事件,其中大多是发生在1949年以来的30年间,曾发生失踪97次,至少有2000人在此丧生或失踪。这些厅怪神秘的失踪事件,主要是在西大西洋的一片叫“马尾藻海”地区,为北纬20°-40°、西经35°-75°之间的宽广水域。这儿是世界著名的墨西哥暖流以每昼夜120-190千米,且多施涡、台风和龙卷风。不仅如此,这儿海深达4000-5000米,有波多黎各海沟,深7000米以上,最深达9218米。

到目前为止,对“百慕大魔鬼三角”的解释可归纳为如下几类:一类认为,这些失踪是由于超自然的原因造成的,联想到是否是外星人的飞碟在作怪。第二类则认为是自然原因造成的,如地磁异常、洋底空洞、甚至还有人提出泡沫说、晴空湍流说、水桥说、黑洞说等等,用一些奇异自然现象来解释“百慕在魔鬼三角”。最近,英国地质学家,利兹大学的克雷奈尔教授提出了新观点,他认为:造成百慕大海域经常出现沉船或坠机事件的元凶是海底产生的巨大沼气泡。在百慕大海底地层下面发现了一种由冰冻的水和沼气混合而成的结晶体。当海底发生猛烈的地震活动时被埋在地下的块状晶体被翻了出来,因外界压力减轻,便会迅速气化。大量的气泡上升到水面,使海水密度降低,失去原来所具有浮力。恰逢此时经过这里的船只,就会像石头一样沉入海底。如果此时正好有飞机经过,当沼气遇到灼热的飞机发动机,无疑会立即燃烧爆炸,荡然无存。与此相反,有些人认为这些奇特的失踪现象彼此间并无联系,因而也就否定百慕在魔鬼三角的存在。百慕大这层神秘的面纱是否已经揭开,沿待后人的研究验

.失踪的飞机群

美国空军上尉泰勒,是一位极有经验的飞行员。他已经驾驶飞机在空中飞行了2500个小时,这个飞行记录并不是一般人能够做到的。

1945年12月5日,泰勒上尉作为第19飞行队的队长,他事领飞行队从佛罗里达洲的劳德代尔堡机场起飞。他和14位飞行员驾驶着5架复仇式鱼雷轰炸机,去执行一项飞行训练任务。

一切正常,天气良好,这是个理想的飞行天气。

他们的任务是飞一个三角形航程,向正东方向飞过巴哈马群岛,接着向北飞行,然后沿三角形最后一个边线返航。

当飞行队越过巴哈马群岛上空时,基地突然收到泰勒中尉和飞行员鲍尔斯的报告,称罗盘失灵,他们弄不清楚自己的高度。片到,基地指挥部收到的信号越来越糟糕,好像所有的飞行员都慌了神。当然指挥部也慌了。

下午4点钟,指挥部听到了泰勒上尉志愿而颤抖的呼叫:

“发生了异常现象!我们不知道为什么偏离了航向。”

指挥部道,“报告你们的位置!”

泰勒:“我弄不清自己的位置,不知在什么地方!”

指挥部:“那么你们向西飞行!”

泰勒:“方位仪出了故障,指针不动。我们辨不清方向,看到的只是大海”,

基地指挥部当时末感到问题的严重性。因为,飞机上燃料充足,可以座付四个小时的飞行。再说,泰勒上尉的飞行技术是让人放心的。指挥部遂即命令另一架仪表正常的飞机替代泰勒。

可是十几分钟后,基地指挥部又接到报告:

“警报!我们现在又迷航了,看不见陆地……一切全乱套了,连大海也好像和往常不一样了!”

这时候也传来勒泰上尉的声音: “我们好像在墨西哥湾上空……”

基地吃惊了,他们怎么偏离航向飞到墨西哥湾去了?下午d时,这5架飞机不知位于何处,还盲目地在飞行,他们之间彼此联系的对话,让基地大大震惊,所有的仪表都失灵了。他们的读数都不相同,连西斜的夕阳都役看见,如果看见太阳他们就会校正航向的。最后,终于传来令基地心碎的声音:

“我们完了……开始往水里沉了……”

电波讯号越来越微弱,直至一片沉寂。这时候,时针正指7点零4分。泰勒上尉连同他的14个伙伴,以及那五架飞机,也就在地球上消失了。

指挥部感到这事不可理解,立刻决定派机寻找。

几分钟之后,一架“马丁”式海上搜索机应命起飞。这架搜索机由13名机组人员驾驶。

但是,这架海上搜索机也失踪了。它好像直奔那个失踪的虎口,连点声息都没有传回,便悄悄地消失了。

短短几个小时,6架飞机、27位飞行员都不见了,简直是莫名其妙。难道他们被天空吞噬了吗?

次日,美国当局对这次事件予以高度的重视,进行了有史以来最大的一次搜寻救援活动。美国海军出动了包括航空母舰在内的21艘舰艇,数百艘快艇和摩托艇,3O0多架飞机,也就是说美国海军动用了佛罗里达海域附近所有能够动用的舰船和飞机。搜索海域从百慕大到墨西哥湾每一寸海面,结果一无所获。

按常理分析,假如飞机坠人海中,那么起码也应当在海面上留下漂浮的油花等痕迹。然而,什么也没留下,就像什么也没有发生过似地。大海依然那么蔚蓝、那么宁静。

负责嫂寻救援的官员沮丧地对上司说:

“天知道发生了什么,我们甚至无法估计可能发生了什么!”

当这件事披露之后,百慕大海域就出了名。

CO2的扑集和封存(CCS)技术有哪些

碳捕捉和储存技术CCS

12月7日,联合国气候变化大会如期在哥本哈根拉开帷幕,来自192个国家和地区的代表出席了这次峰会。几日下来,大会火药味十足,俨然成吵架大会。

虽然各国的“减排目标”还处于拉锯战中,如何达到这些减排目标将是接下来各国关注的问题,于是,“碳捕捉技术”再次成为媒体关注焦点。

相对于人造火山或是太空反光镜这类不靠谱的科技狂想,二氧化碳捕集封存技术(CCS技术)被认为更能拯救地球。众所周知,人类为防止气候变暖需要节能减排,特别是减少二氧化碳的排放。减排路径有许多,但对于以燃煤为主要能源的国家,减少燃煤使用代价高昂,因此CCS成为重要替代选择,因此对那些不愿改变能源消费结构的国家来说,这有极大吸引力。

国人也许对碳捕获技术稍感陌生,殊不知它“正是当今世界上国际最热门的气候变化领域最前沿、最重大的话题之一,国际政治领袖们无不投以巨大关注”。早在去年年底,央行行长周小川就曾畅谈过“碳捕获”的深意,并认为金融业在这方面大有可为。而根据浙大相关专家的看法,国外许多科研机构早已经从中嗅到了巨大的利益诱惑,并悄悄把目标瞄准了国内碳排技术市场。

原始大气中二氧化碳的浓度非常高,并不适宜人类生存,地球是通过把二氧化碳固化后埋在地下(即成煤成油的过程),从而降低了大气中二氧化碳的浓度,变得适宜人类生存了。现在的情况,正好相反,人类通过开采煤、油,把埋在地下的二氧化碳挖了出来,再排放到大气中,大气的二氧化碳浓度就增加了,随之而来的就是温室效应带来的一系列影响。

这实际是对工业革命,化石能源疯狂利用的一种嘲讽和报复。后工业时代注定要解决工业革命的麻烦。

1850年全球CO2排放量仅为2亿吨,到2005年则增加到259亿吨。这其中,全球化石燃料的消费主要集中在工业、电力和交通运输部门,其CO2排放量约占全球CO2排放总量的63.09%~72.96%。

现在,全球各国首脑希望人类在2050年时,把气温控制在不超过1850年时多2摄氏度。

如何减少大气中的二氧化碳排放量,科学家们已经想了各种办法。

第一步是“碳捕获”。据方梦祥教授介绍,目前国际上比较成熟的是化学吸收法,简单来说就是利用CO2和某种吸收剂之间的化学反应,将CO2气体从烟道气中分离出来,目前科学家已经找到了多种性能优良而环保的吸收剂。还有一种方法叫“膜”分离法,化石燃料燃烧后的烟气在通过膜时被分类处理了,有的会溶解并通过,有的却通不过被“拦截”了。为了提高二氧化碳的减排效率,科学家还发明了一种富氧燃烧法,用纯氧燃烧使得排放的CO2纯度更高。据悉,目前国际上像美、英、挪威包括中国都有一些碳捕捉试验项目,其中碳的捕捉效率可以高达90%。

“捕碳”还不是最难的,而且,“就算是把捕捉到的CO2再利用,拿去生产碳酸饮料,最后CO2还是排到了大气中”,科学家需要把CO2安全而永久地“封存”起来,这种碳捕捉与储存技术被称为CCS(即Carbon

Capture and Storage的缩写)技术。

科学家目前主要的思路是“封到地下”,包括深海存储和地质储存。先说“深海存储”,要知道,海洋是全球最大的CO2贮库,其总贮量是大气的50多倍,在全球碳循环中扮演了重要角色。将CO2进行海洋储存的方式,主要是通过管道或船舶将CO2运送到海洋储存地点,然后将CO2注入海底,在海底的CO2水最后会碳化并保存下来。这个方法也有一定隐患:“CO2是通过船舶用高压打入海底的,万一CO2发生泄漏后果不堪设想,特别是海震时常发生。”

目前科学家认为相对可行的是地质储存,把CO2打入地下1~2千米的盐水层,在这样的深度,压力会将二氧化碳转换成所谓的“超临界流体”,并缓慢固化,就像地下的煤炭石油一样。在这样的状态下,二氧化碳才不容易泄漏。“另外,这片岩体的结构要好,有足够多的空间来容纳二氧化碳,而且具有连续性,面积够大。据预测全球盐水层的储量达到10万亿吨,可以储存1000年。

到现在为止,全球共有三个成功的CCS项目在进行中。美国Weyburn-Midale项目填埋的是北达科他萨斯喀彻温省一座废弃油田的煤炭气化厂产生的二氧化碳。英国石油公司经营的阿尔及利亚萨拉油田项目把从当地生产的天然气中提取的二氧化碳输入地下。挪威大型石油天然气公司国家石油公司也在北海有两处类似的项目。另外,全球有上百个CCS项目正在建设中。

在国内,继北京的华能高碑店项目后,华能石洞口第二电厂碳捕获项目7月份在上海开工,该项目总投资1.5亿元,今年年底将建成,预计年捕获二氧化碳10万吨,并号称是全球最大的燃煤电厂碳捕获项目。

虽然目前CCS技术仍在实验阶段,其技术能否收到预期效果还有待证实,但成本之高已经叫人咋舌。根据麻省理工大学去年发表的一份报告,捕捉每吨二氧化碳并将其加压处理为超临界流体要花费30-50美元,将一吨二氧化碳运送至填埋点埋藏需要花费10-20美元。这也就是说,发电厂每向大气中排放一吨二氧化碳就要支付40-70美元,欧盟现行的碳价格则为8-10欧/吨,这一数字也接近联合国政府间气候变化专门委员会建议的碳价格的中间值。

方梦祥教授也给记者简单算了一笔账:比如,燃烧1吨煤要排放出2吨的CO2,现在的煤价按600元/吨计,加上碳排放增加的600多元,成本增加了一倍,而燃烧1吨煤可以发电300度,摊到每度电上,就是电价增加70%-90%,而如果把生产、运输、销售中增加的碳价格核算到每件商品上,最后就能算出该商品的碳排放价。“如果征收起碳税来,这个数字将是很可观的。”无怪乎,有专家称石油交易之后碳排放交易最具潜力,全球碳排放市场将成为未来最大的市场。

与此同时,各国资本已经开始觊觎这个产业,欧盟委员会已明确表示,欧盟计划直接投资80亿欧元用于CCS领域的技术研发。“这对我们来说,既是挑战也是机遇,现在,国外许多机构早已经瞄准了国内碳排技术市场,像我们浙江大学已经跟欧盟、美国能源部、英国等建立起技术合作关系,其实,我们国内的碳捕捉技术成本相比国外要低廉很多,如果可以抢占一些市场份额还是大有可为的,可惜,目前国内企业很少能有这样的眼光。”方梦祥教授说。(青年时报)

-------------------

碳捕获技术简介

目前,主要有四种不同类型的CO2收集与捕获系统:

燃烧后分离(烟气分离)、燃料前分离(富氢燃气路线)、富氧燃烧和工业分离(化学循环燃烧),每种捕获技术的技术特点及其成熟度见下表。

在选择捕获系统时,燃气流中CO2浓度、燃气流压力以及燃料类型(固体还是气体)都是需要考虑的重要因素。

对于大量分散型的CO2排放源是难于实现碳的收集,因此碳捕获的主要目标是像化石燃料电厂、钢铁厂、水泥厂、炼油厂、合成氨厂等CO2的集中排放源。

针对排放的CO2的捕获分离系统主要有3类:燃烧后系统、富氧燃烧系统以及燃烧前系统。

燃烧后系统介绍

燃烧后捕获与分离主要是烟气中CO2与N2的分离。化学溶剂吸收法是当前最好的燃烧后CO2收集法,具有较高的捕集效率和选择性,而能源消耗和收集成本较低。除了化学溶剂吸收法,还有吸附法、膜分离等方法。

化学吸收法是利用碱性溶液与酸性气体之间的可逆化学反应。由于燃煤烟气中不仅含有CO2、N2、O2和H2O,还含有SOx、NOx、尘埃、HCl、HF等污染物。杂质的存在会增加捕获与分离的成本,因此烟气进入吸收塔之前,需要进行预处理,包括水洗冷却、除水、静电除尘、脱硫与脱硝等。

烟气在预处理后,进入吸收塔,吸收塔温度保持在40~60℃,CO2被吸收剂吸收,通常用的溶剂是胺吸收剂(如一乙醇胺MEA)。然后烟气进入一个水洗容器以平衡系统中的水分并除去气体中的溶剂液滴与溶剂蒸汽,之后离开吸收塔。吸收了CO2的富溶剂经由热交换器被抽到再生塔的顶端。吸收剂在温度100~140℃和比大气压略高的压力下得到再生。水蒸汽经过凝结器返回再生塔,而CO2离开再生塔。再生碱溶剂通过热交换器和冷却器后被抽运回吸收塔。

富氧燃烧系统介绍

富氧燃烧系统是用纯氧或富氧代替空气作为化石燃料燃烧的介质。燃烧产物主要是CO2和水蒸气,另外还有多余的氧气以保证燃烧完全,以及燃料中所有组成成分的氧化产物、燃料或泄漏进入系统的空气中的惰性成分等。经过冷却水蒸汽冷凝后,烟气中CO2含量在80%

~98%之间。这样高浓度的CO2经过压缩、干燥和进一步的净化可进入管道进行存储。CO2在高密度超临界下通过管道运输,其中的惰性气体含量需要降低至较低值以避免增加CO2的临界压力而可能造成管道中的两相流,其中的酸性气体成分也需要去除。此外CO2需要经过干燥以防止在管道中出现水凝结和腐蚀,并允许使用常规的炭钢材料。

在富氧燃烧系统中,由于CO2浓度较高,因此捕获分离的成本较低,但是供给的富氧成本较高。目前氧气的生产主要通过空气分离方法,包括使用聚合膜、变压吸附和低温蒸馏。

燃烧前捕获系统介绍

燃烧前捕获系统主要有2个阶段的反应。

首先,化石燃料先同氧气或者蒸汽反应,产生以CO和H2为主的混合气体(称为合成气),其中与蒸汽的反应称为“蒸汽重整”,需在高温下进行;对于液体或气体燃料与O2的反应称为“部分氧化”,而对于固体燃料与氧的反应称为“气化”。待合成气冷却后,再经过蒸汽转化反应,使合成气中的CO转化为CO2,并产生更多的H2。最后,将H2从CO2与H2的混合气中分离,干燥的混合气中CO2的含量可达15%~60%,总压力2~7MPa。CO2从混合气体中分离并捕获和存储,H2被用作燃气联合循环的燃料送入燃气轮机,进行燃气轮机与蒸汽轮机联合循环发电。

这一过程也即考虑碳的捕获和存储的煤气化联合循环发电(IGCC)。从CO2和H2的混合气中分离CO2的方法包括:变压吸附、化学吸收(通过化学反应从混合气中去除CO2,并在减压与加热情况下发生可逆反应,同从燃烧后烟道气中分离CO2类似)、物理吸收(常用于具有高的CO2分压或高的总压的混合气的分离)、膜分离(聚合物膜、陶瓷膜)等。

碳捕捉与封存技术

碳捕获和封存(以下简称CCS)是一种将工业和能源排放源产生的CO2进行收集、运输并安全存储到某处使其长期与大气隔离的过程。CCS主要由捕获、运输、封存三个环节组成。

碳捕获

CO2的捕获,指将CO2从化石燃料燃烧产生的烟气中分离出来,并将其压缩的过程。

对于大量分散型的CO2排放源是难于实现碳的收集,碳捕获的主要目标是化石燃料电厂、钢铁厂、水泥厂、炼油厂、合成氨厂等CO2的集中排放源。目前针对化石燃料电厂的捕获分离系统主要有三种,即燃烧后捕获系统、燃烧前捕获系统和氧化燃料捕获系统。

CO2捕获已经在一些工业应用中采用,马来西亚一家工厂采用化学吸附工艺,每年从燃气电厂的烟道气流中分离出0·2×106t的CO2,用于尿素生产。美国北达科他州煤气化工厂采用物理溶剂工艺,每年从气流中分离出3·3×106t的CO2,用于生产合成天然气,捕获的一部分CO2用于加拿大的强化采油项目。

碳运输

CO2的运输,指将分离并压缩后的CO2通过管道或运输工具运至存储地。第一条长距离的CO2输送管道于20世纪70年代初投入运行。在美国,有超过2,

500公里的CO2输送管道,通过这些管道,每年有大约40×106t的CO2被运输到德克萨斯州用于强化采油。

碳封存

CO2的存储,指将运抵存储地的CO2注入到如地下盐水层、废弃油气田、煤矿等地质结构层或者深海海底或海床以下的地质结构中。

这个过程涉及许多在石油和天然气开采和制造业中研发和普遍应用的技术,如用泵向井入CO2,并通过在井底部的凿孔或筛子使CO2进入岩层。

此外CO2回注油田可以提高采油率,在煤层中注入CO2,可以回收煤层气,这个过程也就是通常所说的强化采油(EOR)和强化采煤层气(ECBM)。目前有三个工业规模(大于1×108tCO2/a)的项目在采用这种技术:北海的斯莱普内尔(Sleipner)项目、加拿大的韦本(Weyburn)项目和阿尔及利亚的萨拉赫(Salah)项目。

碳运输技术简介

在CO2运输方面,目前最可行的办法是利用管道输送。

管道是一种已成熟的市场技术,将气态的CO2进行压缩可以提高密度,从而可降低运输成本。也可以利用绝缘罐将液态CO2装在罐车中进行运输。在某些情况下,使用船舶运输CO2从经济角度讲更具有吸引力,尤其是需要长途运输或需将CO2运至海外时,但由于这种情况需求有限,故而目前运输规模较小。在技术上,公路和铁路罐车也是切实可行的方案。然而,除小规模运输之外,这类运输系统与管道和船舶相比则不经济,不大可能用于大规模运输。

目前,美国等国家在管道运输技术方面已很成熟,需要解决的问题是如何降低运输成本。

运输成本主要取决于管道长度和管道直径,而由于捕获(包括压缩)成本非常高,使得运输成本在整个成本中所占比例较低。因此只要捕获和封存成本较低,或为了获得其他一些收益(如提高油田采收率),许多国家不惜长距离运输的高成本远距离输送CO2。

例如美国为提高原油采收率,采用远距离输送高压液态CO2,最长的输送管是绵羊山脉(Sheep

Mountain)运输管道,它将南科罗拉多州的CO2运至得克萨斯的二叠纪盆地,距离为656km。

碳封存技术简介

碳封存是指将捕获、压缩后的CO2运输到指定地点进行长期封存的过程。

目前,主要的封存方式有地质封存、海洋封存和碳酸盐矿石固存等等。另外,一些工业流程也可在生产过程中利用和存储少量被捕获的CO2。

但是,从普通电厂排放、未经处理的烟道气仅含有大约3%~16%的CO2,可压缩性比纯的CO2小得多,而从燃煤电厂出来经过压缩的烟道气中CO2含量也仅为15%,在这样的条件下储存1t

CO2大约需要68m3储存空间。因此,只有把CO2从烟气里分离出来,才能充分有效地对它进行地下处理。

在将CO2封存到地下之后,为了防止CO2泄漏和或迁移,需要密封整个存储空间。因此,选择一个合适的具有良好封闭性能的封存盖层也十分重要,它可以起到一个“盖子”的作用,以确保能把CO2长期地封存在地下。

比较有效的办法是利用常规的地质圈闭构造,它包括气田、油田和含水层,对于前两种,由于他们是人类能源系统基础的一部分,人们已熟悉他们的构造和地质条件,所以利用它们来储存CO2就比较便利和合算;

而含水层由于其非常普遍,因此在储存CO2方面具有非常大的潜力。

根据碳封存地点和方式的不同,可将碳封存方式分为地质封存,海洋封存、碳酸盐矿石固存以及工业利用固存等。其中,每种封存方式又包括不同的具体技术,他们的发展现状见下表。

------------------

碳捕捉与封存技术的发展现状

现在,

CCS技术已受到国际科技和产业界的密切关注。由于其与现有能源系统基础构造的一致性,受能源资源条件限制较小,该技术尤其受到工业化国家的广泛关注与密切重视,美国、欧盟和加拿大等都制定了相应的技术研究规划,开展CCS技术的理论、试验、示范及应用研究。根据国际能源署的统计,截至到目前,全世界共有碳捕获商业项目131个,捕获研发项目42个,地质埋存示范项目20个,地质埋存研发项目61个。其中,比较知名的有挪威Sleipner项目、加拿大Weyburn项目和阿尔及利亚In

Salah项目等。

近年来,欧美国家又开始把火力发电厂排放的CO2作为主要储存对象,开始进行地下储存的实验。2002年11月开始,美国能源部在西维吉尼亚新港口美国电力能源公司(AEP)的山顶电厂开展利用地质学方法存储CO2的研究项目;

2003年2月,欧盟委员会资助的“二氧化碳储存”研究项目在丹麦、德国、挪威与英国开展储存发电厂排放的CO2储层性质的研究;目前,在示范项目方面,全球范围内已有几个250MW规模的IGCC燃煤电厂建成。在CCS实验项目方面,

2004年9月14日在澳大利亚墨尔本召开的世界碳固存***论坛上,国际合作推动的10个实验改进技术项目得到确认,与会的国家对碳固存的国际合作均表示出浓厚的兴趣。

以上述已经进行的项目和实验说明,

CCS技术是一项极具潜力的减少CO2排放的前沿技术,该技术有可能在经济发展与环境保护两个方面实现双赢局面。因此,我国也应密切关注CCS技术的研究现状和最新进展,及早开展相关技术研究规划和理论与试验的示范与应用。

案例:

以美国为例,美国于2000年开始由美国能源部主持正式开展CO2封存研究和发展项目,其中将地质封存和海洋封存列为主要研究领域,同时研究陆地生态系统(森林、土壤、植被等)对二氧化碳的隔离作用,并制订了详细的技术路线图,详情见下表

2005年美国已开展了25个CO2地下构造注入、储存与监测的外场试验,并已进入验证阶段。

-------------------

我国碳捕集与封存技术发展前景及行动

中国的国情、发展阶段和能源结构决定了碳捕集与封存技术(CCS)是中国应对气候变化的一项重要战略选择,也是全球碳捕集与封存最具潜力的市场;虽然该技术仍处于研发和示范阶段,但国内高校、科研机构和企业已积极行动,取得进展,中国CCS中心筹建的可行性研究也在进行之中;全面认识CCS技术本身及发展中存在的问题,对于中国提高技术研发能力、应对气候变化能力和综合竞争力具有重要意义。

中国应对气候变化的重要选择:碳捕集与封存

《京都议定书》的生效为人类共同应对气候变化提供增添了希望,但通过提高能效、使用可再生能源等来减少二氧化碳排放的技术手段仍比较单一,而以能源驱动的现代社会,化石燃料仍将继续是主要的能源供给,二氧化碳等温室气体的减排面临巨大压力。要实现温室气体浓度稳定在一定水平,还需要采用综合的减排措施,在这样的背景下,IPCC特别推荐碳捕集与封存技术,以期来共同灵活应对温室气体到减排。

所谓二氧化碳的收集与储存,及时收集化石燃料燃烧产生的二氧化碳,并在天然地下储层中长期储存,以减少二氧化碳向大气排放。这项技术手段不但是全球温室气体减排的重要选择,而且是减少大气中二氧化碳浓度的根本措施,能够真正实现能源利用的近零排放。

近年来,中国快速的经济增长对能源的需求日益增加,温室气体排放量已位居世界前列,而中国又是一个深受气候变化影响的发展中国家,极端天气事件频发。目前以煤炭为主的一次能源和以火力发电为主的二次能源结构,使碳捕集与封存在中国应用前景极其广阔,也必将成为中国碳减排和应对气候变化的重要技术选择。

中国CCS:仍处于研发阶段

从20世纪70年代起,我国开始注意二氧化碳提高石油采收率的研究工作。但与国际先进的做法相比,中国的CCS研究与开发还处于前期。二氧化碳捕集只适用于一些二氧化碳纯度高、比较容易捕集的炼油、合成氨、制氢、天然气净化等工业过程。整体看,目前我国的二氧化碳捕集与封存仍处于实验室阶段,而且大都采用燃烧后捕集的方式,工业上的应用也主要是提高采油率。

但是近年来中国在CCS的研究上作了很多工作,从2003年开始中国政府就参加了碳捕集***论坛。“973计划”、“863计划”在内的国家重大课题都对CCS进行了研究。此外,华能和神华等大型公司也对CCS进行规划、研究和示范。2008年7月16日,我国首个燃煤电厂二氧化碳捕集示范工程——华能北京热电厂二氧化碳捕集示范工程正式建成投产,标志着二氧化碳气体减排技术首次在我国燃煤发电领域得到应用。

作为发展中国家第一个CCS中心,煤炭信息研究院将与国际能源署合作开展筹建“中国CCS中心”的工作。它将积极推动中国CCS技术的研发与示范、技术转移和信息共享。

CCS面临的现实挑战

虽然CCS作为一种消除温室气体的根本技术途径,具有很大的发展潜力,但它的应用将极大地改变传统的能源生产方式,影响经济成本;对地质结构、海洋生态、人体健康和地球循环系统具有极大不确定性,影响人类生存环境;它的应用还将改变人们现有认知、现存法律法规及政策,影响社会承受度。所以,CCS面临一下问题:

成本太高。目前估计CCS的应用将使发电成本增加大约0.01-0.05美元/千瓦时,并消耗20%以上的能源,这将阻碍CCS的发展。

健康、安全和环境风险。在CCS的应用中,将存在管道运输相关联的风险、地质封存渗漏引发的风险、二氧化碳注入海洋的风险等,这些风险将不可预见地影响人体健康、安全和生态环境。CCS所具有的潜在风险一直是社会难以接受的主要顾虑,也阻碍着CCS的发展。

相关法律与法规的欠缺,没有一个合适的法律框架以推进地质封存的实施,也没有考虑到相关的长期责任。

认识不足、源汇匹配、风险评价与监测等其他问题。目前对CCS的认识存在不足;对捕获、运输和封存技术本身还要深入研究;还要更好地了解和封存地点的主要二氧化碳源的距离并建立捕获、运输和封存的成本曲线;并需要在全球、地区和局部层面上改进对封存能力估算,要更好地了解长期封存、流动和渗漏过程等等。

因此在CCS的发展上,我们要加强与国际合作,积极利用国外的资金和技术,适应中国的经济社会发展现状,进行谨慎部署、推广应用。

国家对CCS技术的发展给予了高度重视,CCS技术作为前沿技术已被列入国家中长期科技发展规划;在国家科技部2007年的《中国应对气候变化科技专项行动》中,CCS技术作为控制温室气体排放和减缓气候变化的技术重点被列入专项行动的四个主要活动领域之一。“十一五”期间,国家“863”计划也对发展CCS技术给予很大支持。2007年6月国家发改委公布的《中国应对气候变化国家方案》中强调重点开发CO2的捕获和封存技术,并加强国际间气候变化技术的研发、应用与转让。

我国与国际社会一起积极开展了CCS技术研究与项目合作。2007年启动了“中欧碳捕获与封存合作行动fCOACH)”,12个欧方机构和8个中方机构参与了COACH行动。2007年11月20日,启动了“燃煤发电二氧化碳低排放英中合作项目”。2008年1月25日,中联煤层气有限责任公司以下简称“中联煤”与加拿大百达门公司、香港环能国际控股公司签署了“深煤层注入/埋藏二氧化碳开采煤层气技术研究”项目合作协议。自2002年以来,中联煤和加拿大阿尔伯达研究院已在山西省沁水盆地南部合作,成功实施了浅部煤层的CO2单井注入试验。中国石油作为肩负经济、政治和社会责任的大型国企.为展现保护环境的良好社会形象,率先在国内开展了利用CCS技术提高油田采收率的研究与应用工作,于2007年4月启动了重大科技专项及资源综合利用研究”。

来自:国际能源网

-----------

我感觉这个东西有点象讹诈。

中国根本没有这方面的原创技术,完全只能靠购买技术和设备来运行,等于帮欧美养了一个大产业,以此维系碳排放企业(尤其是火电企业)苟延残喘。回收利用二氧化碳目前唯一能得到直接经济效益的就是石油企业,能加气驱油。

搞CCS不是长远可行之路,成本太高,而且浪费资源,还不如彻底一点,挥泪斩马谡,老老实实搞新能源!而不是让不可持续的化石能源产业(煤炭石油火电)借尸还魂,挤占可再生能源研发的宝贵资源。

欧佩克对石油工业的有什么影响?

工业经济学与其成本有部分关系,其中大部分体现在能源(如汽油或燃料油)价格方面,这些石油产品的价格受石油价格、税收和其他因素的影响。石油价格又受石油生产者的决策影响资料来源:《欧佩克能源报告》,2007;《MEED》,2008。,尤其是他们所愿意出售的石油的价格和他们所要并能够提供的石油数量来决定。所以,如果出现石油供应短缺,油价就可能上涨,而这与石油工业中所有环节都有关系,如较高的运输费用。而较高的成本会导致经济增长变缓,经济增长放缓则会影响到工业发展。从历史来看,绝大多数非欧佩克成员相对都有优势——它们不受什么产量定额的限制,不论是否需要,它们都可以按照自己的意愿生产石油。结果导致近年来非欧佩克成员的市场份额明显增加,但石油价格依然保持在一个相对较低的水平上,市场也不如它们应该表现的那样稳定。然而,油价在1998年突然下跌,1999年初欧佩克表示,只有通过欧佩克与非欧佩克产油国之间的合作才能实现市场稳定。限制产量就是一种欧佩克稳定石油市场的措施。一些非欧佩克成员也实施了减产措施,这样有助于石油价格止跌回升。这些国家包括墨西哥、挪威、阿曼、俄罗斯。根据国际能源署的统计,欧佩克的石油产量占到了全球石油总产量的40%。

“当欧佩克希望提高石油价格时,很容易,它减产就是了!”

由于石油供给短缺,汽油价格就会上涨,但未来减产的可能性也是一个不可忽视的原因。当石油产量下降时,天然气公司就开始紧张了。它们害怕石油减少会引起天然气价格上涨。2001年4月,欧佩克决定把自己的石油总产量每天减少100万桶。与此同时,美国的消费者突然感到天然气涨价了。2001年5月14日的天然气价格每加仑平均涨了1.71美元。2005年6月,欧佩克增产,当增至每天2800万桶时,每天的增长量就达50万桶,此时增产已经开始改变石油价格。2005年9月,欧佩克的剩余产量预计可达每天200万桶。然而,2006年11月,欧佩克再次减产,每天减产170万桶,以求使石油价格免于跌破每桶50美元的心理极限值。除欧佩克之外,还有一些国家为世界提供石油,包括美国、墨西哥、加拿大、赤道几内亚、俄罗斯和中国。2008年2月,美国每天从加拿大进口石油达190万桶(据美国能源信息管理局资料)。欧佩克追踪这些国家的石油生产,然后评价自己的生产,以期维持自己所希望的每桶石油的价格。许多方面能够影响天然气的出厂(泵站)价格,但是燃料价格仅仅是全球经济庞大格局中的一部分而已。天然气价格也会对经济体系中的其他部分造成影响。人们已经意识到了价格上涨的即时影响——在你为自己的爱车加油时,你会随着记数表上飞快的数字滚动而心疼得直哆嗦。还有一些间接的影响:你可能会因昂贵的汽油费而放弃自驾车长途旅行;在决定买车时,你可能不会选择耗油大王运动型豪华轿车(SUV)之类的车型,而会选择更为经济的车型。让我们把目光放得更远一些看看吧。汽油价格的飞涨很有可能会导致整个经济体系的通货膨胀。一旦价格上涨,势必对经济体系造成冲击。昂贵的汽油价格意味着运输费用的上涨、长途驾驶费用的上涨、乘飞机出行费用的上涨。所有这些成本意味着如果汽油处于高价位的话,那么,所有你能想象得到的产品都将会涨价。然而,经济学家并不认为汽油价格是通货膨胀的标志,油价和食品价格一样,都是波动性较大的,也就是说,它们都会受到天气、工人罢工和战争的影响。价格的上涨与下跌都取决于全球事件。在观察通货膨胀时,经济学家会把目光放在关键性消费价格指数上,它是某些商品价格的测量指标,如DVD播放机、旅馆房间或大学笔记本,这些商品在短期内的价格都会相当稳定。

谁该为高油价负责?从2007年到2008年,石油价格上涨了79%,触发了人们对全球性经济衰退的恐慌。然而,欧佩克该为高油价负责还是高油价是由投机倒把商人们造成的2008年2月2日,一位美国纽约商业交易所的交易人迅速买下了1000桶原油。几个月后,他将这批原油出售——损失了600美元。这位投机商不仅只是掏了腰包,而且使自己被载入史册——成为一个把石油价格追至每桶100美元大关的人。今天,海湾的石油生产国能够期望每天获得十亿美元的额外石油,而西方的石油消费者却出现了一些抱怨石油价格飙升至每桶145美元的人。欧佩克认为剧增的需求与受到限制的供应导致了油价的持续上扬。在美国和欧洲,政治家正在呼吁加强对石油市场上泛滥的投机商的监管——正是这些人使商品的真实价格被扭曲了。在美国国会上,被激怒的民主党人要求设立法律强制性迫使商人们为已丧失活力的市场供应石油。在欧洲,领导者们已经提出了一项全球性禁令,禁止投机商们的石油交易,他们抱怨最近的石油价格是由式投机行为所造成的。英国牛津商业集团(Oxford Business Group,OBG)是设在伦敦的研究与咨询机构,它认为在石油交易中大量的投机性投资可能会对石油价格产生“明显的冲击”。据报道,随着全球经济的大衰退,投资人对商品价格的关注程度远远大于对传统资产(如质量或合同)的关注。这种波动就是2008年消费者所面对的史无前例的痛苦的原因。最近交易得手的石油合同,西得克萨斯中质油(WTI)就表现得非常明显——创下了成交3871项合同的业绩,相当于5.62亿美元。在同一天,布伦特原油价格已接近每桶144.49美元,自从当天开市以来,原油价格上涨了32.3%。2008年7月11日,石油价格飙升至创纪录的每桶147.27美元,比2007年的油价上涨了87%。在2007年,近60%~70%的交易是以投机倒把的行为进行的,这意味着交易的并不是石油的消费或石油资源。这可真是个大数目。众所周知,从理论上讲,这个数量可能会更大,因为你可以购买或出售比自己消费量更多的石油。有一件事是可以确定的——资金一般在价格评估中扮演着重要的角色。随着石油价格继续上涨,要真正解释需求量的增加就更加困难了——需求量目前的增加相对平缓了。雷曼兄弟公司的首席经济师Ed Morse预测,在2008年的第三季度石油价格将在130美元/桶价位处徘徊。然而,该公司相信,2009年全球石油需求增长率将达1.2%。根据BP公司的统计年鉴资料,2008年的全球石油消费增长率为1.1%。雷曼兄弟公司预计,石油和需求量与国际能源组织的预计相似,它代表着全球27个主要石油消费国的情况。在最近的一份报告中,国际能源组织预计石油产品的需求量到2009年中期将增加1.2%。投资商的辩护人却声称石油价格投机行为与石油真实价格之间并无直接关系。他们指出,来源于新兴经济体增长的需求量,特别是中国的石油需求量的增长起到重要作用,他们不同意欧佩克的观点——2007年全球的石油增长率为44%,因而应该继续增加石油产量。?

“2002—2008年间:从20美元到145美元,再到100美元。”

人们提出了许多解释原油增长的论据,实际上,这些论据都似乎是用来评价目前所看到的石油价位的。常用的机理已不再适用,因为市场正在按其他规律运行。在短期内,储备水平与价格差异,从价格曲线的一端到另一端,保持着令人信服的态势。在考虑价格曲线的发展趋势时,石油需求量的加速增长已经促使人们去开发那些对技术要求更高或者地缘政治条件更加危险的地域的油气田。此外,石油供应服务量的增加也极大地推升了石油成本。自20世纪90年代末以来,边际成本有规律地增加,目前已达65美元/桶。这就剩下了“无法解释”的20美元/桶,而且其基本原理不能被理解。这是一个巨大的缺口,有人调查了所有微不足道的原因,人们常常含糊不清地将其归因于“投机倒把行为”投机倒把(一种商业术语)是对亏损风险的臆断,即一种不能按照正常交易获取收益的行为。除非在某种特殊的安全财务状况(不含风险)时才可能拥有某种把握。严格地讲,这种财政状况代表着一项“投资”。商业上的投机倒把行为包括购买、囤积,以及储备物资、保证金、商品、通货(货币)、房地产、金融衍生工具,或者任何可以通过购入时价格有巨大反差的有价证券的短期倒手,或者通过红利或利息的方式牟取暴利的方式。投机倒把代表着西方财经市场上四种市场角色的一种,它有别于套购保值,长期或短期投资以及套购等行为。。一些解释更为集中:“它是对损失的美元或者是对美国与伊朗之间持续紧张关系的结构性风险的额外补贴。”虽然这些争议可能有道理,但却难以让那些投机商接受20美元/桶的价位。

“石油重新成为网络上的热门话题。自从2001年以来,石油价格上涨了697%,这比互联网股票崩盘前的纳斯达克指数上涨得还高。”

那些曾经用于解释和预测整个20世纪90年代油价变化的机理不灵了。为什么会这样呢?

根据经济学理论而产生的这一学说指的是价格受需求循环的影响,价格围绕着生产的边际成本波动,而这种价格与短期内供给相对稳定但长期看来会有所波动的市场发展相关。显然,在石油市场上也不再会出现后一种情况,问题就在于生产水平的下降,但需求量却迅速上升。因此,生产的边际成本仅仅是在同时期市场供应良好时参考而已。这就是2008年冬天所发生的事情,当时的石油价格跌至55美元/桶。在绝大多数时间里,在一个受限的市场上,你可能会青睐那种较低的价格,即需求与供给处在一条线上的价格水准。在供应不能满足的情况下,石油价格的上涨就会促使理性的消费者渐渐地限制自己以往大量使用的油料。这可以对价格和边际成本做出调整。这一过程也是有争议的,要看清需求量是如何影响石油价格上涨也是非常困难的。对这种明显迟钝的反应有两种解释。第一,每桶石油价格拉升,只能非常迟缓地传递到终端消费者处;第二,生活费用同时上涨也会产生强大的反作用,在最终分析中,石油价格的明显上涨是平衡市场的需要。我们将公路燃料需求作为一个例子来看看这种机理是如何发挥作用的。

公路运输在总消费中占到了约39%的份额,交通行业的燃料需求急剧增加,而代替石油产品的其他燃料又受到很大限制——这就是石油价格走势分析中关键的因素。

石油“平衡价格”平衡价格是一种适当的需求量或服务等于供给量时的价格。的量化。将这些价格的灵活性进行末端对末端的分析,就可获得与名义上的原油价格相关的需求弹性:在全球水准上约为3.4%[所有的都是在其他各点都相同的情况下,石油价格均等地增长了100%,会导致现时的零售价格(出泵价格)上涨35%(以美元计),相当于美元的恒量值上涨了20%,进而使消费量下降了3.4%]。假设这是一个非常缓慢的过程,真实的收入平均弹性指数就已接近100%。2000—2005年(这是最后一个能够获得公路消费指数的年头),全球真实的GDP平均增长量达到了2.75%。供给方面的增加使得每年公路的燃料需求量增加2.6%。一些预测表明,根据消费者去推断,生产出的石油平均增长率为10.22%。这只是理论推测,而实际上,石油价格的增长率为13.25%(英国布伦特原油价格),为需求量演变的过程提供了一种关于从21世纪初以来石油价格增加的有利解释。

由于对价格的响应相当明显,所以当需求量急剧增长时就会促进生产。显然,由这一计算得出的理论增长值与实际价格增长并不完全一致,两种因素造成了这样的结果:(1)与长期评价相对应的判断指数图,而短期内,对于价格波动的判断要比对收入变化的判断进展缓慢(明显的涨价会迅速对需求量产生影响);(2)有偏见地使用估算的平均世界值。发展最快的发展中国家的年收入依然低于人均5000美元的水准,而那些与GDP相关的消费指数就会大于我们所使用的数值。所以,这些国家就会规范零售价格,因此,价格指数要低于我们的数据。必须用当地的研究结果来为石油价格增长的量值来寻找更加精确的解释。

中期的石油价格会处于平衡增长的轨道上吗?在短期内,石油价格应该缓慢地增加(如果美元停止贬值的话)。然而,2008年,产品原料已经得到补充,但市场依然感到有压力。在经济增长的大格局下,零售价格体系将不会改变,唯一能够保持供需平衡的事情就是人们所观察到的自2002年以来的油价增长。石油价格的增加量也正是这种经济大格局不如以前那么明显的表现,而在以前的经济格局中,石油的零售价格没有上升。油价继续飙升的事实可能会与以模拟为基础的假设相悖;规范最终价格的体系将不能再承受这种急剧的增长,而且全球经济增长极有可能受到冲击。我们不应该忘记那些预言家在第二次石油危机之后做出的过分悲观的推论,他们误解了消费者对合同供应和石油价格上涨的判断能力。这种方案再次出现了相同的错误,对全球经济、对危机的化解能力的估计出现了错误。这种价格增长格局的主要利害关系就在于它能够与以前的需求量增长格局进行对比。在这两种极端情况之间,是可能找到妥协方案的。通过改变我们的生活习惯,在提高能源效率方面多下工夫并逐渐开发一些可替代能源,我们希望油价在可控制范围内增长,除非全球经济受到因其他原因引发的重大经济危机冲击时,油价的增长应该得到及时控制。

石油供应的国有化。影响全球石油供应的其他因素是产油国进行的石油资源国有化。石油资源国有化是在国家开始控制石油生产石油供应的国有化是石油生产作业的去私有化过程,这是一种常常与石油的出口限制并举的措施。根据“PFC能源”的咨询文件,在全球预测的油气资源中,仅有7%分布在那些允许私人跨国公司自由支配的国家内,约65%在国有化公司的掌控之中,如沙特阿美石油公司或者在俄罗斯、委内瑞拉这些国家的国有石油公司。在那里,西方石油公司的作业很难开展。PFC的研究表明,政治因素限制了墨西哥、委内瑞拉、伊朗、伊拉克、科威特和俄罗斯等国的油气生产能力。沙特阿拉伯也限制自己的油气生产能力,但由于它自己的限定能力不强,所以与其他国家不同。结果并不能用于评价国家的石油勘探能力。埃克森美孚公司就没有能对它在1981年发现的新油田进行投资。并控制出口权时发生的,对石油资源的预测可能变化极大,目前政治因素已经介入了石油的供应。一些国家正在实施限制。一些正在委内瑞拉从事油气勘探作业的大型石油公司,由于日益推行的油气资源国有化,觉得自己已处在一种困难的窘境,这些国家现在已不愿意与他人分享自己的油气资源。

欧美多国也在经历一场大范围的电荒,什么原因引发了这场能源危机?

我国已经明确提出了电价上涨的各项方案,上下幅度不超过20%,各个省份的工业用电被进行了限制。然而,欧美多个国家也正在面临着大范围的用电荒,尤其是英国已经上涨了电价,相比于之前的电价,英国的电价已经上涨了7倍不止。

反观全球多个国家出现的能源危机现象,造成该现象的主要原因在于能源储存量过少,不可再生资源的使用频率越来越高。众所周知,地球上的各个资源都是经过上亿万年的不断发展与进化而来,可再生资源的数量不会得到太大的影响,但是不可再生资源的数量却出现了明显的下滑。

第一个原因:各个国家没有储存好大量的能源

一般情况下,大部分国家都会与多个企业与外国商家进行相互合作,从而保证国内的资源储备量十分充足,资源短缺现象并影响国内的发展与工业建设。然而,许多国家都制定了资源价格上升的方案,这使得多个国家措手不及,反而没有储存好大量的不可再生资源,比如煤炭。除了煤炭资源储存量过少之外,石油资源和天然气资源也考验着每一个国家的能源储存量。

第二个原因:不可再生资源的消耗量过大

我们来举一个简单的例子,比如某一个国家的工业生产需要50吨的煤炭和30吨的石油。然而,该国家的能源储存量远远达不到市场的需求量,再加上能源消耗速度过大,难免会使得不可再生资源面临着不同程度的短缺问题。除此之外,不可再生资源的消耗量过大,也会导致不同程度的问题,首先带来的最主要问题就是工业产能与能源消耗量不成正比。某一家工厂浪费了大量的不可再生资源,可是这家工厂的产能却迟迟无法得到提升,这就会导致能源消耗量过大,反而工程看不到直接的效益。

总的来说,能源消耗是一大难题,毕竟地下埋着的石油资源和天然气资源以及煤炭资源的数量十分有限。虽然各个国家都会发现不同规模的油气田和煤矿,但并不意味着相关国家就能很好的利用已知的煤炭资源和天然气资源以及石油资源。再加上工业消耗量越来越大,二氧化碳的排放量越来越高,人们很难产生一种合理利用资源的方案呀。

什么是低碳生活?

「低碳生活 (low carbon living)」,正是指生活作息时所耗用能量要减少,从而减低碳,特别是二氧化碳的排放。 低碳生活,对于我们普通人来说,是一种态度,而不是能力,我们应该积极提倡并去实践低碳生活,注意节电、节油、节气,从点滴做起。

在中国,年人均CO2排放量2.7吨,但一个城市白领即便只有40平居住面积,开1.6L车上下班,一年乘飞机12次,碳排放量也会在2611吨。节能减排是在必行。

如果说保护环境,保护动物,节约能源这些环保理念已成行为准则,低碳生活则更是我们急需建立的绿色生活方式。

简单理解,低碳生活就是返璞归真地去进行人与自然的活动,主要是从节电节气和回收三个环节来改变生活细节,包括以下一些良好的生活习惯:

冰箱

冰箱内存放食物的量以占容积的80%为宜,放得过多或过少,都费电。

■食品之间、食品与冰箱之间应留有约10毫米以上的空隙。

■用数个塑料盒盛水,在冷冻室制成冰后放入冷藏室,这样能延长停机时间、减少开机时间。

空调

空调启动瞬间电流较大,频繁开关相当费电,且易损坏压缩机。

■将风扇放在空调内机下方,利用风扇风力提高制冷效果。

■空调开启几小时后关闭,马上开电风扇。晚上用这个方法,可以不用整夜开空调,省电近50%。

■将空调设置在除湿模式工作,此时即使室温稍高也能令人感觉凉爽,且比制冷模式省电。

洗衣机

在同样长的洗涤时间里,弱档工作时,电动机启动次数较多,也就是说,使用强档其实比弱档省电,且可延长洗衣机的寿命。

■按转速1680转/分(只适用涡轮式)脱水1分钟计算,脱水率可达55%。一般脱水不超过3分钟。再延长脱水时间则意义不大。

微波炉

■较干的食品加水后搅拌均匀,加热前用聚丙烯保鲜膜覆盖或者包好,或使用有盖的耐热的玻璃器皿加热。

■每次加热或烹调的食品以不超过0.5千克为宜,最好切成小块,量多时应分时段加热,中间加以搅拌。

■尽可能使用“高火”。

■为减少解冻食品时开关微波炉的次数,可预先将食品从冰箱冷冻室移入冷藏室,慢慢解冻,并充分利用冷冻食品中的“冷能”。

计算机

■短时间不用电脑时,启用电脑的“睡眠”模式,能耗可下降到50%以下;关掉不用的程序和音箱、打印机等外围设备;少让硬盘、软盘、光盘同时工作;适当降低显示器的亮度。

■用笔记本计算机要特别注意:对电池完全放电;尽量不使用外接设备;关闭暂不使用的设备和接口;关闭屏幕保护程序;合理选择关机方式:需要立即恢复时采用“待机”、电池运用选“睡眠”、长时间不用选“关机”;电池运用时,在WindowsXP下,通过SpeedStep技术,CPU自动降频,功耗可降低40%。

燃气

■用大火比用小火烹调时间短,可以减少热量散失。但也不宜让火超出锅底,以免浪费燃气。

■夏季气温高,烧开水前先不加盖,让比空气温度低的水与空气进行热交换,等自然升温至空气温度时再加盖烧水,可省燃气。

■烧煮前,先擦干锅外的水滴,能够煮的食物尽量不用蒸的方法烹饪,不易煮烂的食品用高压锅或无油烟不锈钢锅烧煮、加热熟食用微波炉等等方法,也都有助于节省燃气。

■开短会也是一种节约,照明、空调、扩音用电都能省下来。即将过期的香水,可喷洒在塞入枕头的干燥花里、洗衣服的水中和拖过的地板上

■任何电器一旦不用立即拔掉插头

■尽量选用公共交通,开车出门购物要有购物计划,尽可能一次购足。多步行,骑自行车,坐轻轨地铁,少开车。

■开车节能:避免冷车启动,减少怠速时间,避免突然变速,选择合适挡位避免低档跑高速,定期更换机油,高速莫开窗,轮胎气压要适当。

■多用电邮,MSN等即时通讯工具,少用传真打印机

■植树,植很多很多树

■“低碳”达人

小行为大改变 “低碳族”悄然兴起

“走路还是开车?”“爬楼梯还是坐电梯?”“室温28度还是27度?”……这些选择题,逐渐成了时下越来越多年轻人认真考虑的问题。这批以实际行动减少生活中的碳排放,支持中国政府刚刚提出的碳减排目标的年轻人,也因此得到了一个共同的雅号——“低碳族”。

在哥本哈根气候峰会召开前夕,本报记者提前探访就在我们身边的环保新人类。

一算吓了一跳

我一年产生4吨碳

在南京一家大银行工作的刘**告诉记者,自己会愿意尝试“低碳”生活并非突发奇想。一个月前的一天,她偶然在网上发现有种“碳排量计算器”,出于好玩她决定计算一下自己的碳排量。

点开“碳排量计算器”的页面,会冒出一堆问题,比如,你家里是否使用节能灯泡?你每年搭乘长途飞机的总次数是多少?……只要耐心回答完问题,计算器即会算出一定时期内你制造的二氧化碳数量。“真是只是觉得好奇,才给自己算一下的,结果,我一年竟然要制造4吨二氧化碳,比我们中国人每年2.7吨的平均水平高出了不少。”刘**坦言,这个实在有点超标的结果,让她蒙了,她开始意识到自己生活中的确存在很多浪费行为,“我的一些生活习惯必须改变,比如提前淘米并浸泡10分钟,然后再用电饭锅煮,可减少4.5度电,算下就能减少4.4千克二氧化碳排放呢。这些都是举手之劳,如果不做就成了浪费之源。”

四年没买新T恤

减少185.6千克碳排放

31件环保T恤轮流穿,平时吃饭自带筷子……南京化工职业技术学院毕业班的戴小建用自身行动带动了周边一群同学共同倡导低碳。

自进入学校,戴小建就参加了学校的寸草环保协会,并成为协会核心骨干。因为积极参与了很多的环保活动,他得到了不少件活动纪念T恤。“每次活动一结束,环保T恤就基本都不穿了,我觉得这个很浪费不环保,后来我想,我把它当做夏天的T恤穿,既减少了碳排放,又能多次利用环保T恤上的宣传信息,何乐而不为呢?”

4年下来,戴小建一共攒到了31件T恤,除了入学开始买了2件外,其他夏天穿的都是这样的衣服,仅仅衣服一项,戴小建4年来就减少了185.6千克二氧化碳排放量。“夏天的衣服都是环保文化衫,不是为了省钱,少买一件不必要的衣服可节省6.4千克二氧化碳排放,我要用行动呼吁大家‘低碳生活’。”

认养7棵香樟树

以此抵消员工碳排量

位于河西泰山路的帝斯曼(中国)公司在“低碳”问题上,更加直接了。他们认养了自家门前7株香樟,以此抵消员工的碳排放量。

公司老板唐江生是个地道的英国人,他说,在欧洲很多大企业都会做“碳抵消计划”,就是计算每位员工日常活动中制造的二氧化碳排放量,然后付相应费用给专门机构,通过植树、购买环保器材等途径,来抵消公司员工的“碳排量”。

他还真就算了一笔账:公司共有40名员工,走路和骑自行车不产生碳排量,而坐公交每公里的碳排量是0.069公斤,骑摩托车是0.094公斤、电动车是0.043公斤、地铁是0.042公斤,开私家车最高,每公里达到0.11公斤。每位员工的交通工具,出行路线一一统计,然后通过地图计算公里数、全年264个工作日,每天一个往返……唐江生最后得出全体员工使用交通工具所排放的二氧化碳量是9.381吨。然后再加上办公室里电脑、办公用电、打印机、传真机、复印机、UPS电源等产生的碳排放量,公司员工出行和办公器材所产生的碳排放量一年为80.821吨。而一株乔木每天大约可以吸收0.033吨二氧化碳,一年就可以吸收12.045吨,这样算下来,他认养了7株行道树。

“低碳”是种境界

核心就是节电和节能

“在工作中,尽量少用打印机;平时多走路上下班,这些都能降低二氧化碳排放。”南京理工大学毕业的张衡同样也是个“低碳生活”先行者。

节电节能的理念充斥着他的生活。“我尽量不用打印机,而是用电子邮箱传达,这样可以‘无纸’办公。相机里的照片我不会全部打印出来,都是备份到电脑里。”

对于电脑的使用,张衡也严格按照节电方式操作。比如将电脑显示器进入睡眠模式的时间设定在1分钟;此外,如果外出有事,他也会在电脑上设置自动关机时间,以防当天忘记关闭电脑。将这些小细节都使用上,张衡每天可以减少约2公斤碳的消耗量。

“我家的家电几乎都是节能电器,空调只有在极端天气下才会开。”张衡说,“低碳生活”充斥着家庭生活的每一个细节。“用拖地的水冲厕所,或者浇花;用淘米水洗菜。”每一个节约的想法,都可以为减碳作出贡献。 本报记者 王娟

■“低碳”最前沿

请二氧化碳到地下沉睡

东大科学家正在研究这个看似疯狂的课题

作为工业文明的副产品,大气中浓度越来越高的二氧化碳让享受着文明成果的人类伤透了脑筋。可再生能源、新能源要取代化石燃料尚需时日,依靠绿化来“减碳”也不可能一朝一夕完成,二氧化碳“加热”地球却每一分每一秒都在发生——有没有更快捷的“治碳”方法?

答案是将二氧化碳赶入地下——这个看似有些疯狂的主意正成为目前世界的热门课题。引人注目的是,东大科学家也在参与这一课题的研究。

捕获技术日臻成熟

“在目前的环境下讨论二氧化碳的捕获与封存意义重大。”东南大学热能工程研究所赵长遂教授告诉记者,他所在的学校课题组从2001年起就开始关注这一课题。

赵教授介绍,目前采用液态吸收剂从发电锅炉尾气中吸收二氧化碳,获得高纯度的二氧化碳已经成为可能,国内已完成工业示范,研究水平与国际相当。

“不同的燃煤发电方法有不同的CO2捕获方式,比如我们在973计划资助下进行的氧燃烧循环流化床燃烧发电技术,可以实现较低成本捕获CO2。与此同时,通过添加价廉易得的石灰石等,发生循环煅烧和碳酸化反应,在提高发电效率的同时,得到高纯度的二氧化碳,为下一步利用或封存做准备。”赵教授介绍,这些新型发电技术的国际合作目前已在洽谈中。

封存二氧化碳是趋势

被捕捉的高纯度二氧化碳去向何处?这才是解决温室效应最关键的一步。赵教授透露,目前对收集的二氧化碳有利用和封存两种处理方法。利用方面,华能北京热电厂,就将燃烧后烟气中捕集的二氧化碳提纯精制后,用来制作碳酸饮料,年捕获量为3000吨。但这种方式只是将二氧化碳暂时封闭,一旦易拉罐开启,捕获的二氧化碳又重新回到了空气中。

对彻底封存二氧化碳,美国、日本等发达国家已经展开研究和试验,通过输气管道或罐车,将高纯度二氧化碳输入地下,使其永远不能为祸人间——这项技术已经可以实现。据了解,采空或接近采空的油气田、不可采的煤田以及千米以下的咸水层都是较理想的封存地点。

“从长远看,封存二氧化碳是大势所趋,但降低成本和确保安全性仍是关注的焦点。一旦封存的二氧化碳发生泄漏,密集的窒息性气体必定会引起人间灾难,这个后果将可能由我们的子孙后代来承担。”赵教授补充说,国内多个碳捕获项目正相继上马,但要在中国完全走通“捕获-输送-封存”全过程,还有很长的路要走。

本报记者 杨 彦

相关

南工大研制出低碳水泥

南京工业大学近日向社会公布了一项正在研究的新技术“低碳水泥”。除了煤电和钢铁,生产、使用过程中二氧化碳排放量最大的就数水泥了。南工大研制的这项新技术旨在通过改良水泥原料及相关材料的特性,减少水泥生产使用过程中二氧化碳的排放,目标是使水泥生产过程中二氧化碳的减排达到50%。

左图:南京地铁为“声援”哥本哈根气候大会特别发行“环保地铁乘车券”。以这种方式呼吁市民多乘地铁、低碳出行。

■“低碳”建议

防止全球变暖的举手之劳

关掉不必要的电灯难道不是举手之劳吗?事实上我们往往忘记了这一点。白天少开或关掉电灯,夜晚家里人尽量在同一个房间里活动,进出家门时随手关灯……想加入“低碳生活”一族么,不妨看看以下建议。

●及时关电脑

统计数据显示,家庭中75%的用电都耗在使电视、电脑和音响等保持待机状态上。平均一台台式电脑每天耗电60至250瓦。如果一台电脑每天使用4小时,其他时间关闭,那么每年能节省约500元人民币,且能减少83%的二氧化碳排放量。

●多乘公交车

交通产生的二氧化碳占温室气体排放量30%以上,减少此类排放量的最好办法之一是:乘坐公交车。美国公共交通联合会称,公共交通每年节省近53亿升天然气,这意味着能减少150万吨二氧化碳排放量。

●网上付账单

在网上进行银行业务和账单操作,不仅能够挽救树木、避免在发薪日开车去银行,排放不必要的二氧化碳,还能减少纸质文件在运输过程中所消耗的能源。

●选择小房子

人们都向往大房子,但大房子在无形中会增加碳的排放量,还需要更多的能量来加热和制冷,就拿暖气供应来说,大房子需要消耗大量的能源来维持温度。房子越大,对环境的影响也大,现在美国每户家庭每年平均要排放18吨温室气体,要消耗大量的燃料和非再生能源。

●舍弃牛排

联合国数据显示,全球肉制品加工业排放的温室气体占排放总量的18%,甚至超过交通业。地球上共有15亿只家养牛和野牛,17亿只绵羊和山羊,而且它们的数量还在快速增长。如果你转做一名素食主义者,每年的二氧化碳排量将减少约1.5吨。

●打开一扇窗

我们每年人均排放约25吨二氧化碳,怎样减少这个数字?有一些简单有效的方法:打开一扇窗户,取代室内空调;夏天使用空调时,温度稍微调高几度。数据统计表明,只要所有人把空调调高一度,全国每年能省下33亿度电。

●挂根晾衣绳

研究表明,一件衣服60%的“能量”在清洗和晾干过程中释放。需要注意的是,洗衣时用温水,而不要用热水;衣服洗净后,挂在晾衣绳上自然晾干,不要放进烘干机里。这样,你总共可减少90%的二氧化碳排放量。

●自备购物袋

每年全球要消耗超过5000亿个塑料袋,其中只有不到3%可回收。塑料袋都由聚乙烯制成,掩埋后需上千年时间实现生物递降分解,期间还要产生有害的温室气体。下次去杂货店的时候,别忘记自备购物袋。

●种一棵树

谈到全球变暖,如果你不了解复杂的碳捕捉(CCS)技术,那也不必慌张。事实上“捕捉”二氧化碳的能手就是树木本身。要是你嫌自己种树太麻烦的话,至少可以捐钱给环保组织,让他们代劳。

比尔·盖茨的储能方案能否取代锂离子电池?

撰文?/?马晓蕾

编辑?/?涂彦平

设计?/?杜?凯

来源?/?Fttimes,作者:Henry?Sanderson

在世界大部分地区,风能和太阳能等可再生能源正变得比化石燃料更便宜,但它们需要存储才能成为可行、稳定的能源,寻找可替换的储能方式迫在眉睫。

在英格兰北肯特海岸的一堵被风吹过的海墙上,玛丽·金(Mary?King)指着几英里长的空旷沼泽农田,那里很快就会有数千块太阳能电池板和全国最大的电池装置之一。这种电池厂将成为英国和其他地方的熟悉景象

11月18日,英国首相鲍里斯·约翰逊(Boris?Johnson)承诺要在2030年之前安装足够的风力涡轮机,为每个家庭提供电力,但这将需要管理间歇性能源供应的解决方案。

这就是为什么我们需要电池,一个能将电能作为化学能储存的设备。手机和特斯拉电动汽车中使用的锂离子电池是目前最主要的储能技术,从加州到澳大利亚,很可能还有肯特郡,都在部署锂离子电池,以帮助电网管理激增的可再生能源供应。

特斯拉首席执行官埃隆·马斯克(Elon?Musk)曾表示,他预计该公司的能源业务,包括为电网提供太阳能和巨大的锂离子电池,将在长期内与汽车业务一样大。

但是,除了锂离子电池,还需要更便宜、更持久的储能技术才能完全取代化石燃料发电厂,实现100%使用可再生能源,但其中大部分还不是很划算。目前,燃气电厂弥补了与可再生能源之间的差距,提供稳定的能源供应,比目前的电池能够提供更长的时间。

英国政府推出的绿色工业革命中其中有一项就是10亿英镑的能源创新基金,以帮助新的低碳技术商业化。其中包括曼彻斯特郊外Highview?Power公司正在建造的液态空气电池。

锂离子电池是目前占主导地位的存储技术,并正在全球范围内部署,以帮助电网管理激增的可再生能源供应

如果没有储能,各国将很难大幅减少对天然气和燃煤电厂的使用,也很难减少气候变化的有害影响,比如海平面上升和极端的天气条件。

各家公司都在竞相开发下一个突破口,包括使用丰富原材料的电池技术、火山岩、液态空气储存罐以及将重物降到废弃矿井下的系统,以便在本世纪中叶开启大规模的可再生能源。这是由几位著名的商业领袖所支持,包括微软创始人比尔·盖茨(Bill?Gates)和软银的孙正义。?

“如果我们想要全面的去碳化,那么所有这些技术都将是必需的。”能源咨询公司Wood?Mackenzie的分析师罗里·麦卡锡(Rory?McCarthy)说,“但你需要的投资规模是数十亿美元,才能有所作为。”

零库存的供应链?

每天,电网必须不断地使供需匹配,如果把提供可靠、稳定能源供应的燃煤和燃气电厂剥离出来时,这一过程就变得更加困难。麻省理工学院的加拿大化学教授唐纳德·萨多维(Donald?Sadoway)将电网比作“世界上最大的供应链,但是零库存”。

霍恩斯代尔电力储备,它是世界上最大的锂离子电池之一,由特斯拉制造,在南澳大利亚詹姆斯敦附近

今年第一季度,可再生能源提供了英国47%的电力,创下了纪录。然而,这种成功在几周后就产生了一个问题,在3月份第一次全国冠状病毒封锁后,能源需求下降了20%之多。当可再生能源发电量达到总发电量的50%左右时,国家电网的工作变得更加困难,它需要化石燃料厂的大型旋转涡轮机的帮助来缓和系统的波动性。

需求的下降意味着可再生能源在能源结构中的比例超过了一半,国家电网控制中心的工程师们不得不进行微妙的平衡,其中一部分涉及到增加储能的使用。支持者们说,这证明了技术的扩展是正确的。

事实证明,这是对未来电网将如何看待的一个测试案例,当可再生能源的比例更大时,Harmony?Energy的首席执行官彼得·卡瓦纳(Peter?Kavanagh)说,该公司在英格兰南海岸的普尔用六个特斯拉锂离子电池向电网提供电力。

“在许多国家,太阳能和风能是最便宜的发电形式,但一旦可再生能源在能源组合中形成了一定的规模,就需要进行储能,就像我们在疫情期间看到的那样。”他说,“疫情已经提前五年证明了电池存储的商业案例。”

目前世界上97%以上的储能方式是利用电力将水抽到高位水库,然后将水释放出来,驱动涡轮机产生更多的电力,即所谓的“抽水蓄能”。水库是储存能量的一种方式。但这些系统受到地理环境的影响较大,未来可能会受到水资源日益匮乏的限制。

锂离子电池的优势在于,它们可以放置在任何地方,并且可以像电动汽车一样,非常迅速地向电网提供电力。它们可以在几毫秒内做出反应,一般可以提供长达4小时的存储时间,帮助电网处理发电中的突然停电,但从长远来看,成本太高。在英国,大多数大型锂离子电池可提供30-90分钟的能量。

氧化还原液流电?

替代技术可以使大量能源更安全地储存更长时间,这将使风能和太阳能更加一体化。但它们需要迅速扩大规模,以满足不断增长的需求并具有成本竞争力。

今年1月,美国加州的主要能源政策和规划机构加州能源委员会呼吁建立长时间储能,提供10小时以上的能源,足以储存一天的太阳能供通宵使用。

中标者之一是英威尼迪能源系统公司,该公司使用以钒为基础的大型电池,钒是钢铁工业用来提高金属强度的原材料。这些氧化还原液流电池最早是由美国国家航空航天局在20世纪70年代开发的,使用单独充电的大型电解质罐来储存能量,这使得它比传统电池更容易扩容。

巴西巴伊亚州的一个钒矿坑。使用这种材料的Invinity?Energy?Systems公司的Matt?Harper说,钒电池可以在白天储存8到10个小时的可再生能源,并在需求高峰时加以利用

该公司首席商务官马特·哈珀(Matt?Harper)说,钒电池可以在白天储存8到10个小时的可再生能源,并在需求高峰期,或在夜间部署,为电力价格设定了一个下限。他说,由于钒电池使用的是水基电解质,因此灭火的可能性比起起火的可能性更大。它们的寿命也比锂离子电池长,可以使用30年。

在中国东北部的大连市中心,融科电力正在建造世界上最大的钒电池。它的容量为800兆瓦时,将是位于加州的世界最大锂离子电池装置规模的三倍以上。它将帮助辽宁省电网更好地整合风电。

“在市中心安装大规模的锂离子电池是不允许的(出于安全考虑)。”融科市场总监李斌说,“锂离子电池的安全问题还没有解决。”

然而钒的价格波动很大,2018年11月飙升至127美元/公斤,如今又跌至25美元/公斤,这可能对生产成本产生影响。

西门子的火山岩储能

寻找其他储能选择的人则完全避免使用电池,而尝试类似于抽水机的自然和物理解决方案,它可以在20小时内调度能量,不需要天然水库。

在德国汉堡市郊,一栋灰色混凝土无窗大楼的正面用紫色字体写着“欢迎进入新石器时代”,该工厂由世界第二大风力涡轮机制造商西门子Gamesa运营

西门子Gamesa的汉堡工厂利用来自挪威的1000吨火山岩,以热能的形式储存130兆瓦时的能量,提供的能量足够约3000户德国家庭使用,或者大约750辆电动汽车使用。

首先用电将火山岩加热到至少600℃。这些能量可以储存一个星期,但目标是在一夜之间调度电力。西门子Gamesa公司创新项目负责人哈桑(Hasan?Oezdem)表示,该系统可以安装在正在面临淘汰的燃煤电厂中,并使用其涡轮机。

“你可以把它们变成巨大的存储设施。”他说,“最大的公用事业公司正在努力重生,因为你无法出售它们,没有人购买燃煤电厂。我们提供的是以绿色目的让它继续运行。”

在曼彻斯特郊区,一个类似的项目正在一个退役电厂的场地上成形,使用液态空气的容器而不是火山岩。Highview?Power在赢得英国商业、能源和工业战略部的1000万英镑拨款后,11月在特拉福德能源园的250兆瓦时电厂破土动工。

“锂离子电池是伟大的技术,但对于电网所面临的挑战来说,它太小了。”该公司的首席执行官哈维尔(Javier?Cavada)说,“长时间储能的商业模式是确保所有的风能和太阳能发电都得到利用。”

英国埃塞克斯海岸的风力涡轮机。英国首相鲍里斯·约翰逊承诺,到2030年,将安装足够的风力涡轮机为每户家庭提供电力

尽管有各种优势,但这些技术将很难打败锂离子的制造规模,过去十年电动汽车投资的激增推动了锂离子的发展。据彭博新能源财经报道,2010年至去年,锂离子电池的价格实际下降了87%,约为156美元/千瓦时。

这一价格可能会进一步下降。根据Wood?Mackenzie的数据,到2030年,全球用于电网存储的电池安装量将上升到741吉瓦时,其中大部分是锂离子电池,由美国和中国主导。1千兆瓦时足以为100万户家庭供电1小时。

此外,通过利用电力电解水而产生的氢气,可以成为较长时间储存能源的一种有竞争力的解决方案。氢气可以储存在地下洞穴或枯竭的油气田中。

Cleve?Hill附近的格拉维尼,Hive?Energy能源计划在那里建立它的太阳能和储存地点。该公司正在决定使用哪种技术来生产电池,但很可能会选择锂离子电?

Hive?Energy公司正在规划Graveney附近的Cleve?Hill太阳能和储能基地,该公司的总经理休·布伦南(Hugh?Brennan)表示,该公司正在决定使用哪种技术来制作电池,但很可能会选择锂离子。

在Graveney,教堂外和路边都立着标语牌,上面有防毒面具的和“不要太阳能发电厂”的口号

超越锂离子的储能技术一览

钒氧化还原液流电池储能:使用两个含有正电荷和负电荷的液态钒电解质的罐子,这些电解质通过泵输送穿透电池中的隔膜。这种电池比锂离子电池的降解程度更低,循环寿命更长。

压缩空气储能:液态空气被冷却到零下196℃,之后被储存在储罐中。然后将其加热,驱动涡轮机发电。另一种方法是使用加热的压缩空气将能量储存在专门建造的洞穴中。

重力储能:包括将沉重的矿块在废弃的矿井中上下提起,作为储存和发电的一种方式。

熔盐储能:由比尔·盖茨的突破能源风险投资公司支持的热能储存马耳他公司,以熔盐的形式将能量以热的形式储存。该公司表示,该技术可以持续20年以上,适合储存6个多小时。

液态金属电池储能“”使用金属在加热时自然分离,形成阴极和阳极,由盐电解质分离。一旦初始加热,电池就会在放电和充电时产生热量,从而保持较高的工作温度。

使用铁、硫和锌等廉价原材料的低成本电池为锂离子电池技术提供了替代品。例如,以锌为原料的电池开发商EOS表示,其电池有能力在3至12小时内释放能量。由比尔·盖茨支持的初创公司Form?Energy表示,其电池可以低成本地储存能量长达150小时。

氢储能:利用电力生产氢气是一种储存能量的方式,但在这个过程中会有大量的能量损失,因此效率不如电池。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。