1.龙卷风走廊的历史危害

2.美国冬季龙卷风的成因

3.美国各个州的气候特征?

4.风是怎样形成的?

5.为什么美国那么容易发生龙卷风

6.全球变暖导致极端气象事件频发,你所知道的极端气象时间都有什么时候呢?

7.NBA雷霆所在城市是哪?

8.关于美国的雷暴天气!

龙卷风走廊的历史危害

俄克拉荷马城旅游_俄克拉荷马城天气

“龙卷风走廊”(Tornado Alley),是指位于北美大平原位于美国得克萨斯州西部和明尼苏达州之间的一条狭长地带,这片定义模糊的区域因发生在这里的大量龙卷风而得名。自1890年以来,前后共有120多场龙卷风袭击了俄克拉荷马城及周边地区。1999年5月3日的一场龙卷风席卷俄克拉荷马城周围地区, 1700座家园夷为平地,6500处建筑遭到破坏。俄克拉荷马城东北同一沿道上的大部分地区也常受到龙卷风袭击。在人口59.00万的塔尔萨小城,1950年至2006年间共遭遇了69场龙卷风。此外,塔尔萨建立在阿肯色河边,这里是由一系列小溪冲积而成的平原,在大雨的恶劣天气还很容易遭到洪水袭击。1974年、1976年和年三次大规模洪水灾害造成了数十万美元的损失。

龙卷风是大气中最强烈的一种涡旋现象。它的外形看起来像一个猛烈旋转的圆形空气柱,上大下小,从浓积云或积雨云中伸向地面或水中,其空气猛烈地旋转着,颜色有乳白色、灰色、黑色等。龙卷风风速强,能达到每秒150至200米。同时,龙卷风的移动速度很快,最快能达到每小时90至100公里。

美国被称为“龙卷风之乡”,每年都会有1000到2000个龙卷风,而且强度大,这主要是和美国的地理位置、气候条件以及大气环流特征有关。

美国冬季龙卷风的成因

一、自然

龙卷风(Tornado)

龙卷风是一种强烈的、小范围的空气涡旋,是在极不稳定天气下由空气强烈对流运动而产生的,由雷暴云底伸展至地面的漏斗状云(龙卷)产生的强烈的旋风,其风力可达12级以上,最大可达100米每秒以上,一般伴有雷雨,有时也伴有冰雹。

空气绕龙卷的轴快速旋转,受龙卷中心气压极度减小的吸引,近地面几十米厚的一薄层空气内,气流被从四面八方吸入涡旋的底部。并随即变为绕轴心向上的涡流,龙卷中的风总是气旋性的,其中心的气压可以比周围气压低百分之十。

龙卷风是一种伴随着高速旋转的漏斗状云柱的强风涡旋。龙卷风中心附近风速可达100m/s~200m/s,最大300m/s,比台风近中心最大风速大好几倍。中心气压很低,一般可低至400hPa,最低可达200hPa。它具有很大的吸吮作用,可把海(湖)水吸离海(湖)面,形成水柱,然后同云相接,俗称“龙取水”。由于龙卷风内部空气极为稀薄,导致温度急剧降低,促使水汽迅速凝结,这是形成漏斗云柱的重要原因。漏斗云柱的直径,平均只有250m左右。龙卷风产生于强烈不稳定的积雨云中。它的形成与暖湿空气强烈上升、冷空气南下、地形作用等有关。它的生命史短暂,一般维持十几分钟到一二小时,但其破坏力惊人,能把大树连根拔起,建筑物吹倒,或把部分地面物卷至空中。江苏省每年几乎都有龙卷风发生,但发生的地点没有明显规律。出现的时间,一般在六七月间,有时也发生在8月上、中旬。

龙卷风的形成

龙卷风是云层中雷暴的产物。具体的说,龙卷风就是雷暴巨大能量中的一小部分在很小的区域内集中释放的一种形式。龙卷风的形成可以分为四个阶段:

(1)大气的不稳定性产生强烈的上升气流,由于急流中的最大过境气流的影响,它被进一步加强。

(2)由于与在垂直方向上速度和方向均有切变的风相互作用,上升气流在对流层的中部开始旋转,形成中尺度气旋。

(3)随着中尺度气旋向地面发展和向上伸展,它本身变细并增强。同时,一个小面积的增强辅合,即初生的龙卷在气旋内部形成,产生气旋的同样过程,形成龙卷核心。

(4)龙卷核心中的旋转与气旋中的不同,它的强度足以使龙卷一直伸展到地面。当发展的涡旋到达地面高度时,地面气压急剧下降,地面风速急剧上升,形成龙卷。

龙卷风常发生于夏季的雷雨天气时,尤以下午至傍晚最为多见。袭击范围小,龙卷风的直径一般在十几米到数百米之间。龙卷风的生存时间一般只有几分钟,最长也不超过数小时。风力特别大,在中心附近的风速可达100-200米/秒。破坏力极强,龙卷风经过的地方,常会发生拔起大树、掀翻车辆、摧毁建筑物等现象,有时把人吸走,危害十分严重。

龙卷风的危害:

1995年在美国俄克拉何马州阿得莫尔市发生的一场陆龙卷,诸如屋顶之类的重物被吹出几十英里之远。大多数碎片落在陆龙卷通道的左侧,按重量不等常常有很明确的降落地带。较轻的碎片可能会飞到300多千米外才落地。

龙卷的袭击突然而猛烈,产生的风是地面上最强的。在美国,龙卷风每年造成的死亡人数仅次于雷电。它对建筑的破坏也相当严重,经常是毁灭性的。

在强烈龙卷风的袭击下,房子屋顶会像滑翔翼般飞起来。一旦屋顶被卷走后,房子的其他部分也会跟着崩解。因此,建筑房屋时,如果能加强房顶的稳固性,将有助于防止龙卷风过境时造成巨大损失

龙卷风的防范措施

(1) 在家时,务必远离门、窗和房屋的外围墙壁,躲到与龙卷风方向相反的墙壁或小房间内抱头蹲下。躲避龙卷风最安全的地方是地下室或半地下室。

(2) 在电杆倒、房屋塌的紧急情况下,应及时切断电源,以防止电击人体或引起火灾。

(3) 在野外遇龙卷风时,应就近寻找低洼地伏于地面,但要远离大树、电杆,以免被砸、被压和触电。

(4) 汽车外出遇到龙卷风时,千万不能开车躲避,也不要在汽车中躲避,因为汽车对龙卷风几乎没有防御能力,应立即离开汽车,到低洼地躲避。

在1999年5月27日,美国得克萨斯州中部,包括首府奥斯汀在内的 4个县遭受特大龙卷风袭击,造成至少32人死亡,数十人受伤。据报道,在离奥斯汀市北部40英里的贾雷尔镇,有50多所房屋倒塌,已有30多人在龙卷风丧生。遭到破坏的地区长达 1英里,宽200码。这是继5月13日迈阿密市遭龙卷风袭击之后,美国又一遭受龙卷风的地区。

一般情况下,龙卷风是一种气旋。它在接触地面时,直径在几米到1公里不等,平均在几百米。龙卷风影响范围从数米到几十上百公里,所到之处万物遭劫。龙卷风漏斗状中心由吸起的尘土和凝聚的水气组成可见的“龙嘴”。在海洋上,尤其是在热带,类似的景象在发生称为海上龙卷风。

大多数龙卷风在北半球是逆时针旋转,在南半球是顺时针,也有例外情况。卷风形成的确切机理仍在研究中,一般认为是与大气的剧烈活动有关。

从19世纪以来,天气预报的准确性大大提高,气象雷达能够监测到龙卷风、飓风等各种灾害风暴。

1995年在美国俄克拉何马州阿得莫尔市发生的一场陆龙卷,诸如屋顶之类的重物被吹出几十英里之远。大多数碎片落在陆龙卷通道的左侧,按重量不等常常有很明确的降落地带。较轻的碎片可能会飞到300多千米外才落地。

龙卷的袭击突然而猛烈,产生的风是地面上最强的。在美国,龙卷风每年造成的死亡人数仅次于雷电。它对建筑的破坏也相当严重,经常是毁灭性的。

在强烈龙卷风的袭击下,房子屋顶会像滑翔翼般飞起来。一旦屋顶被卷走后,房子的其他部分也会跟着崩解。因此,建筑房屋时,如果能加强房顶的稳固性,将有助于防止龙卷风过境时造成巨大损失。

龙卷风通常是极其快速的,每秒钟100米的风速不足为奇,甚至达到每秒钟175米以上,比12级台风还要大五、六倍。风的范围很小,一般直径只有25~100米,只在极少数的情况下直径才达到一公里以上;从发生到消失只有几分种,最多几个小时。

龙卷风的力气也是很大的。1956年9有24日上海曾发生过一次龙卷风,它轻而易举地把一个22万斤重的大储油桶“举”到15米高的高空,再甩到120米以外的地方。

龙卷风在美国又叫旋风,是常见的自然现象。旋风的破坏力往往超过地震。

1879年5月30日下午4时,在堪萨斯州北方的上空有两块又黑又浓的乌云合并在一起。15分钟后在云层下端产生了旋涡。旋涡迅速增长,变成一根顶天立地的巨大风柱,在三个小时内像一条孽龙似的在整个州内胡作非为,所到之处无一幸免。但是,最奇怪的事是发生在刚开始的时候,龙卷风旋涡横过一条小河,遇上了一座峭壁,显然是无法超过这个障碍物,旋涡便折抽西进,那边恰巧有一座新造的75米长的铁路桥。龙卷风旋涡竟将它从石桥墩上“拔”起,把它扭了几扭然后抛到水中。

龙卷风的探测

龙卷风长期以来一直是个谜,正是因为这个理由,所以有必要去了解它。龙卷风的袭击突然而猛烈,产生的风是地面最强的。由于它的出现和分散都十分突然,所以很难对它进行有效的观测。

龙卷风的风速究竟有多大?没有人真正知道,因为龙卷风发生至消散的时间短,作用面积很小,以至于现有的探测仪器没有足够的灵敏度来对龙卷风进行准确的观测。相对来说,多普勒雷达是比较有效和常用的一种观测仪器。多普勒雷达对准龙卷风发出的微波束,微波信号被龙卷风中的碎屑和雨点反射后重被雷达接收。如果龙卷风远离雷达而去,反射回的微波信号频率将向低频方向移动;反之,如果龙卷风越来越接近雷达,则反射回的信号将向高频方向移动。这种现象被称为多普勒频移。接收到信号后,雷达操作人员就可以通过分析频移数据,计算出龙卷风的速度和移动方向。

龙卷风的危害。

1995年在美国俄克拉何马州阿得莫尔市发生的一场陆龙卷,诸如屋顶之类的重物被吹出几十英里之远。大多数碎片落在陆龙卷通道的左侧,按重量不等常常有很明确的降落地带。较轻的碎片可能会飞到300多千米外才落地。

龙卷的袭击突然而猛烈,产生的风是地面上最强的。在美国,龙卷风每年造成的死亡人数仅次于雷电。它对建筑的破坏也相当严重,经常是毁灭性的。

在强烈龙卷风的袭击下,房子屋顶会像滑翔翼般飞起来。一旦屋顶被卷走后,房子的其他部分也会跟着崩解。因此,建筑房屋时,如果能加强房顶的稳固性,将有助于防止龙卷风过境时造成巨大损失。

龙吸水:龙卷风的别名。龙卷风,因为与古代神话里从波涛中窜出、腾云驾雾的东海跤龙很相象而得名,它还有不少的别名,如“龙吸水”、“龙摆尾”、“倒挂龙”等等。

龙卷风的特点

龙卷风是大气中最强烈的涡旋现象,影响范围虽小,但破坏力极大。它往往使成片庄稼、成万株果木瞬间被毁,令交通中断,房屋倒塌,人畜生命遭受损失。龙卷风的水平范围很小,直径从几米到几百米,平均为250米左右,最大为1千米左右。在空中直径可有几千米,最大有10千米。极大风速每小时可达150千米至450千米,龙卷风持续时间,一般仅几分钟,最长不过几十分钟,但造成的灾害很严重。

龙卷风常发生于夏季的雷雨天气时,尤以下午至傍晚最为多见。袭击范围小,龙卷风的直径一般在十几米到数百米之间。龙卷风的生存时间一般只有几分钟,最长也不超过数小时。风力特别大。破坏力极强,龙卷风经过的地方,常会发生拔起大树、掀翻车辆、摧毁建筑物等现象,有时把人吸走,危害十分严重。

美国各个州的气候特征?

思路分析]

北美洲以三大南北纵列带为特征的地形结构,对于大陆气候的分异有特别重要的意义。影响最显著的是西部科迪勒拉山系,它由三重山脉和一系列山间高原、盆地组成,不仅高度相当大,宽度也很大,沿海又缺乏深入大陆的海湾。因此,科迪勒拉山系一方面成为极地太平洋气团向东侵入的重要障碍,使温和湿润的海洋性气候仅局限于北纬40°以北的西岸,处于背风位置的山间高原和山间盆地成为半干旱和干旱气候;另一方面,极地加拿大气团和热带墨西哥湾、大西洋气团,由于科迪勒拉山系的阻挡也不能西侵,因而只能活动于大陆的中、东部。科迪勒拉山系的东带落基山也是大陆东、西部之间气候上的重要分界线,它不仅导致东、西部的降水量大不一样,对气温也有一定影响。一般说来,落基山以西,除北纬40°以北的沿海和迎风山坡外,年降水量均在500毫米以下,冬季降水占优势,夏季少雨或干旱,冬季气温则高于同纬度东部各地。落基山以东除高纬度的北部地带以及紧靠落基山的大平原部分地区以外,年降水量都在500毫米以上,夏季降水比率增高。斯波坎和蒙特利尔的气候资料就可以说明这个问题。当然,造成这种差异同大气环流、洋流等因素也有关系。

落基山以东为中部平原地带,地势低平坦荡,无东西向山脉阻隔,向南北开敞,并有哈得孙湾、五大湖、密西西比水系、墨西哥湾等水域相互贯通。这样的地形条件有利于南北秉性不同的气团畅行无阻。冬季,干冷的极地加拿大气团可径直南下,造成寒潮天气,使当地气温骤降;夏季,热带墨西哥湾、大西洋的温湿气团可自由北上,直达哈得孙湾沿岸,带来闷热多雨天气。中部平原成为南北冷暖气团交绥、争逐的场所,气旋活动频繁,冬季尤为活跃。因此,中部平原天气多变,是北美洲气温和降水季节变化最大、大陆性较强的地区。

东部的阿巴拉契亚山,高度和宽度都不大,山脉的连续性也较差,并不构成气候上的显著界线,但对局部地区的气候仍有很大影响。例如阿巴拉契亚山的西北坡,冬季面迎经过五大湖地区并略有变性的极地加拿大气团,往往形成大雪;山地南部因高度较大,对热带墨西哥湾、大西洋气团产生抬升作用,形成地形雨,年降水量在1,500毫米以上,成为北美洲多雨区之一。

[解题过程]

北美洲气候的基本特征有:

一是温带大陆性气候占优势。北美洲面积纬向延伸比较广,但大部分地区位于北温带;同时,地形结构以三大南北纵列带为特征,西部山地、东部高地,特别是高大的科迪勒拉山系纵贯南北,形成了海洋气团运行的重要障碍。因此,北美洲的气候主要属于温带和亚寒带气候类型,特别是亚寒带大陆性气候占优势。这里大陆性气候的总特点是冬季寒冷,一月平均气温最低;夏季暖热,七月是最热月;气温年较差较大;年降水量适中,以夏雨为主。但与具有大陆性强烈的亚洲相比,该洲温带大陆性气候远不如亚洲那样极端,气温的年较差没有亚洲同纬度地区那么大,夏雨的集中程度和冬季的干旱程度也均不如亚洲。

二是气候类型的多样性。北美洲的气候类型较多,拥有从热带到寒带的各种气候型,这在各大洲中也是比较突出的。但北美洲又有自己的特点,如极地冰原气候的分布比亚洲广;亚洲缺少西海岸的温带海洋性气候,而北美洲东岸又

不具备亚洲东岸那样典型的季风气候,而是由温带大陆性湿润气候、亚热带湿润气候所代替;另外,本洲无赤道雨林气候及热带海洋气候、热带干湿季气候,而热带干旱与半干旱气候类型的分布也不及亚洲广泛。

三是气候类型结构独特。北美洲所拥有的各种气候类型在分布和排列上也有其特点。首先,大陆北部的极地冰原气候、极地长寒气候和亚寒带大陆性气候三种类型的分布,都是南北排列的,其中除极地冰原气候外,又作东西延伸,这与亚欧大陆北部的情况基本上相似,具有明显的纬向地带性结构的特点。自此以南,气候类型的分布、排列图式出现了东、西部的对比:大致在西经100°以东地区,从北向南依次为温带大陆性湿润气候、亚热带湿润气候。一般说来,它们也是南北更替、东西延伸的,基本上体现了纬向地带性结构特点。在西经100°以西,包括大平原和科迪勒拉山间地区,因深居内陆,自东向西干旱性增强,气候类型作东西排列、南北延伸,表现出非纬向地带性结构特点。在大陆西岸,气候类型的排列顺序为温带海洋性气候、亚热带夏干气候、热带干旱与半干旱气候,它们虽是自北向南有规律地更替,但又都作南北延伸,因此,这是纬向地带性和非纬向地带性结构特点的综合体现。

风是怎样形成的?

走在路上,速度快的话会两颊生风;站在高处,会被空中的风吹拂。风似乎就跟空气一样无处不在,那么风湿怎么形成的呢?它跟空气有什么联系?下面由学习啦小编为你详细介绍风的相关知识。

风是怎样形成的

气压差引起风

大气为什么会运动?是什么力量驱使它运动的呢?原因是错综复杂的。水平的风,垂直的升降气流,不规则的乱流运动,都各有其复杂的成因。这里先就风的成因谈起吧。

自从十七世纪出现了气压表,指出空气有重量因而有压力这个事实以后,为人们寻找风的奥秘提供了开窍的钥匙。十九世纪初,有人根据各地气压与风的观测资料,画出了第一张气压与风的分布图。这种图不仅显示了风从气压高的区域吹向气压低的区域,而且还指明了风的行进路线并不直接从高气压区吹向低气压区,而是一个向右偏斜的角度。

一百多年来,人们抓住气压与风的关系这一条从实践中得来的线索,进一步深入探究,总结出一套比较完整的关于风的理论。风朝什么地方吹?为什么风有时候刮起来特别迅猛有劲,而有时候却懒散无力,销声匿迹?这完全是由气压高低、气温冷暖等大气内部矛盾运动的客观规律在支配着的。人们不仅用这种规律来解释风的起因,而且还用这些规律来预测风的行踪。

气压怎样作用于风

风为什么从高气压区吹向低气压区?为什么在吹向低气压区的同时会向右偏斜?又为什么风力有时迅猛且强劲,而有时却非常微弱?要弄清这些问题,得先了解一些关于气压分布的知识。

上图是一张某一时刻的海平面气压分图。图中画着一条条曲曲弯弯的等压线,顾名思义就可知道凡是同一条等压线经过之处,那里的海平面气压都是相等的。在等压线闭合起来的地区,如果气压高于周围,就称为高气压(图中A处);若气压低于周围,则称为低气压(图中D处)。而从高气压伸展出来的部分称为高压脊(图中B处),从低气压伸展出来的部分称为低压槽(图中C处)。这种气压分布图和表示地势起伏的地形分布图十分想象:高气压和低气压好比山峰和谷底,高压脊和低压槽犹如山脊和山坳,而等压线就象表示海拔高度的地形等高线。

等压线的分布有疏有密,这种等压线的疏密程度表示了单位距离内气压差的大小,称为气压梯度,等压线愈密集,表示气压梯度愈大。这和地形分布图上地形等高线的疏密分布表示坡度的平陡也有相似之处。

上图所示,地形等高线愈是稀疏,表示那里地势比较平坦,而在地形等高线非常密集的地方,那里一定是个陡坡。如果在斜坡上造起每级高度相等的石阶梯,每一石级相当于一条地形等高线,那么石阶梯的坡度愈大,石级的间隔距离便愈短,地形等高线愈密集,而平坦的石阶梯坡度则相应的地形等高线必愈疏。既然气压分布图上的等压线可以比喻为地形分布图上的等高线,那么气压梯度也就好比石阶梯的坡度了,大概梯度这个名称就是这样比喻出来的吧。

各地的气压如果发生了高低的差异,也就是说两地之间存在气压梯度的话,气压梯度就会把两地间的空气从气压高的一边推向气压低的一边,于是空气流动起来,风产生了, 气压梯度怎么会产生能推动空气运动的力量呢?这可以拿江河中水流来打比方。水从高处流向低处,是因为高处的水和低处的水存在着水位差(右下图),从而使上下游同一水平面上的两点A和B之间发生了重力差异,上游A处所受水柱重力显然要大于下游B处。于是便产生从上游压向下游的旁压力,水就在这种旁压力的作用下顺着倾斜河床从上游流向下游,从高处流向低处。两地间水位差愈大,A、B间的重力差异也愈大,水就流得愈快。

在空气的“海洋”里也有“水位差”―气压差,即两地间存在着气压梯度。计量水位差单位用米,而计量气压差则用毫巴为单位。两把尺子不一样,但水和空气都是流体,又都有重量,水平方向上两地的水或空气如果存在重力的差异,就都会产生由重力大的地方指向重力小的地方的旁压力(如下图)。从这个意义上看,情况又都相像:水受到旁压力的作用从高处流向低处,水位差愈大,流速愈快;而空气也在旁压力的推动下,从气压高处流向气压低处,两地间气压差愈大,也即气压梯度愈大,空气流得也愈快,风刮得愈起劲。

人们把在空气的“海洋”里,由于存在气压梯度而产生这种旁压力称为气压梯度力(如下图),气压梯度力是由于大气压力不均匀而作用在空气质点上的压力,其方向由高压指向低压,垂直于等压面,也可以分解成水平气压梯度力和垂直气压梯度力。显然,它的大小和气压梯度成正比。

现在不难明白风怎样吹起的道理,空气的流动原来是由气压梯度力推动起来的,风刮的猛烈还是微弱也是由气压梯度力的大小来决定的。

热极生风

风为什么吹起?又为什么从高气压斜穿等压线吹向低气压的原因我们在前面基本上已经揭开了。风是由气压分布的差异所引起的,但引起各地气压差异的原因又是什么呢?这里先从“热极生风”说起吧。

从字面上看,“热极生风”的意思是说:一个地方热得太厉害,不久便会产生大风。夏天雷雨大风之前,空气往往热得出奇;而在冬天天气回暖,热得反常的时候,不久也会有冷空气大风来临。

热与冷是相比较而存在的,这个地区热得反常了,与别的地区一比较,就会比出冷来了。如果那里原来受冷空气控制,那两个区域之间冷热的差异就更大了。

在一定条件下各种矛盾运动都可以互相转化。冷热的矛盾也可以转化为气压高低的矛盾:热空气发生膨胀,引起该区空气密度减小,结果使得单位面积上承受的空气柱重量也减小,也就是说,那里的气压降低了;相反的,一个地区冷下来的结果会引起那里气压的升高。可见,两地间如果发生了冷热的差异,就会相应地引起气压的差异,冷热差异越大,气压差异也越大。

两地间气压差加大,气压梯度力就会增加,风也越刮越有劲。迅猛异常的雷雨大风和冷空气大风,就是因为雷雨地区、冷空气地区与暖区之间发生了很大的温度差,从而引起很大的气压差和很大的气压梯度力而产生的。这样,冷和热的矛盾运动,通过气压高低的矛盾,最后又转化为风的矛盾运动、热运动转化成为风的机械运动。

然而,这种矛盾运动的转化过程还没有完结:风刮起来以后,川流不息到处奔走,它从南方刮到北方,又从北方刮到南方,从暖的地区刮到冷的地区(气象上称为暖平流,常用高空等压面图上等高线与等温线迭加在一起来进行分析),又从冷的地区刮到暖的地区(气象上称为冷平流),使冷暖空气来来往往,这样风就很自然地成为传送热量的角色。它每走一步就会引起经过之处温度的改变,从而也使各地之间的温度差异发生变化。于是风的机械运动终于又转化为冷与热的矛盾运动。然后,冷与热的矛盾运动又可通过气压高低的矛盾转化为风的机械运动……这种转化过程,一次次地循环,没完没了。

地转风

地转风是指自由大气中空气的水平等速直线运动,是指无加速度、惯性离心力不起作用情况下的运动。在这种运动中,只有水平气压梯度力和地转偏向力起作用。地转风是自由大气中水平气压梯度力和地转偏向力相平衡时的空气的水平运动。

地转风是平衡运动,它受到的合外力等于零,没有加速度。空气运动平行于等压线,人背风而立,高压在右,低压在左。这就是北半球地转风的规则。平时我们说水往低处流,那么空气也应该从高压向低压流动了。但实际上却是平行于等压线流动的,这是地转偏向力影响的结果。因为,当有了气压梯度之后,空气要从高压向低压流,但一有运动,就会受地转偏向力的作用,使运动方向向右偏(北半球),随着运动方向的改变,偏向力的方向也改变,因为偏向力的方向永远垂直于运动方向所指的右方。

梯度风

梯度风是地转风在一定条件下,转化成另一种大尺度的系统风。当地转风在圆形的气压场中时,风是做等速曲线运动。作曲线运动物体的运动轨道,都有一定长度半径,所以风在运动时,除梯度力、偏向力作用外,还要受到惯性离心力的作用,当三个力作用平衡时,有效分力为零,风沿等压曲线作惯性等速曲线运动,这就是梯度风。

等压线往往是无规则的曲线。为了典型起见,我们假定等压线是同心圆。在这样的气压场中,空气受到水平气压梯度力的作用,力的方向是垂直于等压线由高压指向低压。

相关阅读:

龙卷风是怎么形成的?

中国气象局专家张涛解答:

龙卷风的形成既需要有暖湿空气交汇提供对流条件,又要求高空和低空都有强风,还需要有较平坦的地形。而美国特殊的地理环境就容易满足龙卷风形成条件。

美国为何多发龙卷风?

中国气象局气象干部培训学院教授俞小鼎说,美国的平原区域多,地势平坦。

俄克拉荷马城附近地区由于坐落在开阔平原地带上,因此被称为“龙卷风走廊中心”。“由于落基山呈南北走向,北边的冷空气很容易侵入,而南边的墨西哥湾提供了较好的水汽条件,暖湿气流容易过来。”

龙卷风的威力:

龙卷风属于强对流天气中最为剧烈的一种,存在于在极不稳定能量和充沛水汽条件下产生的强雷暴天气系统中,具有范围小、寿命短等特点。

“龙卷风是柱状强烈旋风,常表现为由雷暴云底伸展至地面的漏斗状云。即便最弱的龙卷风产生的风力也相当于台风中心风力,而强龙卷风的风力更远超过超强台风的中心风力,最大可达100米每秒以上。”

龙卷风属于强对流天气中最为剧烈的一种,存在于在极不稳定能量和充沛水汽条件下产生的强雷暴天气系统中,具有范围小、寿命短等特点。

为什么美国那么容易发生龙卷风

在美国中西部的龙卷风走廊,每年都会爆发1000多次龙卷风,在那里,时速500公里/小时的龙卷风疯狂前进,只要走进这里,你很可能因为龙卷风抛出的致命武器、天空砸下的大冰雹或温度极高的闪电而丧命,所以,最好旅游不要去龙卷风走廊,那里可能是全世界最危险的地方。

龙卷风走廊地带从落基山脉延伸到阿巴拉契山脉,平均每年这里会形成1000次龙卷风,风速则达到500公里/小时,沿途经过的农田、房屋、人和牲畜都被摧毁殆尽。俄克拉荷马城和塔尔萨之间44号州际公路沿线被称为“I - 44龙卷风走廊”,这里居住的100多万居民已经习惯了每年的龙卷风季节。每年春季,当来自落基山脉的干燥冷空气经过这片低地平原,与来自墨西哥湾沿岸的潮湿热空气相遇,龙卷风便如期而至。

自1890年以来,前后共有120多场龙卷风袭击了俄克拉荷马城及周边地区。1999年5月3日的一场龙卷风席卷俄克拉荷马城周围地区, 1700座家园夷为平地,6500处建筑遭到破坏。俄克拉荷马城东北同一沿道上的大部分地区也常受到龙卷风袭击。在人口59.00万的塔尔萨小城,1950年至2006年间共遭遇了69场龙卷风。此外,塔尔萨建立在阿肯色河边,这里是由一系列小溪冲积而成的平原,在大雨的恶劣天气还很容易遭到洪水袭击。1974年、1976年和年三次大规模洪水灾害造成了数十万美元的损失。

2010年12月,美国科学家发现,美国南部各州的许多地方可能比堪萨斯州更容易形成龙卷风。通过统计除阿拉斯加州之外的美国本土48个州,从1950年到2007年每平方公里的龙卷风发生率,密西西比州立大学的地球科学家P. Grady Dixon与同事确定了在密西西比州中南部和阿肯色州中部的一大片区域中的一些地区(在图中用橙色和深红色表示的区域),每年至少有一次龙卷风在其境内经过25英里的距离。这种比例类似于在大平原上的龙卷风热点地区出现的情况。与传统上被认为位于龙卷风走廊中心区域的许多地方相比,密西西比州史密斯县的一些地方——这里是美国历史上受龙卷风影响最严重的区域——发生龙卷风的几率要高出约35%。 研究小组指出,将包含这些地区的龙卷风危险地图扩大将提高公众的认识,并加大努力以减少龙卷风造成的损失。

全球变暖导致极端气象事件频发,你所知道的极端气象时间都有什么时候呢?

全球变暖导致极端天气频发,甚至有专家表示极端冷暖事件频发或成新常态。全球各地都出现极端天气,美国、中国、日本等,这些主要原因还是人类破坏环境,造成全球变暖,最终出现这样的天气。那么你知道的极端天气时间都是什么时候呢?

北美一月份大部分地区出现先暖后冷极端天气。

今年一月份的时候,北美很多地区的天气变化非常大,温度比往年偏高超过了10摄氏度,但是没想到到了2月份之后,多个地区气温突然变冷,甚至还遭遇了强寒流、极端暴风雪,美国中部地区、德克萨斯州地区、俄克拉荷马城等地方平均气温都比往年低,甚至还有不少地方创下历史最低温。

欧洲地区2月份大寒潮来袭。

欧洲在2021年2月份的时候遭遇了大寒潮,甚至后面还影响多个地区,如中欧、东欧,南欧和地中海区域,尤其是希腊北部地区,本来这里是属于?温暖如春?地中海气候,但是这一次气温竟然低到了-19摄氏度,打破了以往低温的纪录,而这极端的寒冷天气也让这些地方到处都是白茫茫一片的积雪。

中国大部分地区气温和往年相比高出一些。

2012年中国大部分地区的气温都比往年高,而且前期偏冷,到了后期偏暖,更多地区大部分时间都处于比较暖和的天气。不过黑龙江漠河地区出现极端天气,在2021年五月份的时候,已经过了小满的节气,漠河竟然下起了雪,气温一下骤降。而在南方,大部分地区温度达到36℃的高温,两极分化严重。平时我国都会有倒春寒,但是没见过夏季了还出现下雪天气,倒夏寒的极端天气还是极少出现。

NBA雷霆所在城市是哪?

队 名 俄克拉荷马城雷霆(Oklahoma City Thunder)

城 市 俄克拉荷马城

分 区 西部 西北区

老 板 克莱-本内特(Clay Bennett)

球 场 福特中心球场

进入 NBA 2008年9月3日

总冠军数 1

现任主教练:斯科特-布鲁克斯

俄城当地ABC电视台7月就报道了新军可能使用的名称,而雷霆就在这6个名称之中。此后,官方发布新赛季赛程页面失误,让雷霆这个名称被公众确认。随后,在俄城新军对阵魔术的季前赛球票上,又赫然印上了雷霆的字样。最近一次,也就是上周,甚至连Logo都被匿名人士发布了出来。

随着发布会结束,雷霆的相关商品也被摆上了NBA在线商城的货架。

“我认为这是一个伟大、愉快的时刻,”本内特说道。“这是一件非常有乐趣的事,但是谜底就这样被揭开了,我又觉得有点失望。”

的确,雷霆早已不是什么秘密了,但是让本内特感到惊奇的是,仍旧有着数以百计的俄克拉荷马城民众特意来到现场,一同见证这个历史性的一刻。

“我的家人原本也都想过来,我和他们说,‘算了吧,这已经不是什么大事了,每个人都知道我们的名称了,没有悬念了。’”本内特说道。

在发布会现场,6个孩子和戴斯蒙德-梅森、戴米恩-威尔金斯一同揭晓了球队的Logo。本内特表示,Logo上的蓝色象征俄克拉荷马州州旗,象征这里的人民,**象征着太阳,而橙红色象征着日落。

作为俄克拉荷马城新军的名称,雷霆不仅代表这个地区时常出现的雷雨暴风天气,当地第45步兵师也一直使用雷鸟(Thunderbirds)这个名称,向当地印第安原驻民致敬。此外,俄克拉荷马城当地著名乡村歌手加斯-布鲁克斯的代表作,也刚好就叫做《雷声滚滚》(The Thunder Rolls)。

“球队的新名称几乎融入了所有和‘雷’相关的元素,”本内特说道。“这能够激发人们的情绪,听上去也非常具备力量感。”

本内特表示,球队的队服、吉祥物近期不会公布,但是相关产品,比如T恤衫、篮球等等,都已经可以买到。不过,从雷霆主教练P.J.-卡莱西莫的话中不难听出,队服其实已经设计完毕了。

“如果我们的球员穿上那身队服上阵,一定会看起来很棒,很养眼的。”卡莱西莫说道。

随着俄克拉荷马城新军定名雷霆,也宣告着西雅图超音速正式成为历史。自从1967年建队,40年以来,超音速6次更换Logo,却始终没有离开过西雅图这片土地。但是,一切都在2008年初秋改变了。今天过后,超音速将永远成为历史,成为只属于西雅图这座城市的记忆。

中文名称:西雅图超音速

英文名称:Seattle Supersonics

所在城市:华盛顿州 西雅图市

08-09赛季起主场搬迁至俄克拉荷马州俄克拉荷马市

所属分区:西部 西北区

球队颜色: 绿色和金色

球队老板:克雷-本内特(Clay Bennett)

现任教练:PJ-卡莱西莫(PJ Carlesimo)

主体育馆:钥匙球馆(KEY Arena)

观众数量:17072人

主教练: 鲍勃-希尔(Bob Hill)

冠军次数:1

加入NBA :1967 年

超音速从1967-1968年进入NBA,在70年代就连续两度华山论剑,并于1979年夺得总冠军。80年代超音速有起有落,直到90年代又开始复活,在佩顿的率领下再入总决赛。

初入NBA的前两个赛季,超音速不如人意。1967-1968赛季,超音速23胜59负,第二个赛季也仅多胜了7场。1969-1971赛季,伦尼-威尔肯斯(Lenny Wilkens)加盟超音速,并且兼职球队教练,他与鲍博-鲁尔(Bob Rule)率队取得36胜46负。1974-75赛季,比尔-拉塞尔成为超音速的教练兼经理,他们也第一次杀入季后赛。

从1977年到1980年,超音速开始进入鼎盛时期。1977-1978赛季,伦尼-威尔肯尼再次成为超音速的主教练,超音速以47胜35负进入季后赛。第一轮他们以2比1淘汰湖人(当时首轮采取3战2胜制),接着又相继击败开拓者和掘金队,与华盛顿子弹队相会于总决赛。两队大战7场后,超音速在最后一战以99比105失利,错失冠军。

第二个赛季,超音速获得报仇机会。1978-1979赛季,超音速第一次获胜场过超过50,以52胜30负进入季后赛。相继相击湖人有太阳队后,超音速在总决赛中再次遇到子弹队。输了第一场后,超音速连下四城,获得总冠军。

此后超音速沉沉浮浮,80年代5次进入季后赛。1985-1986赛季结束后,主教练伦尼-威尔肯斯挂印而去,超音速结束了“威尔肯斯时代”。威尔肯斯在超音速执教期间,为超音速夺得球队上唯一的一座冠军奖杯。他在超音速执教的纪录是478胜402负。

在80年代,1986-1987赛季值得一提。当赛季超音速队将西克马(Silkma)送走。当西克马离开超音速队时,他总共为超音速队拿下了7729个篮板、705个盖帽和3044个罚球,各项数据都高居球队之首。他的43号球衣也在超音速队退役。当赛季超音速队39胜43负,但是仍然打进了季后赛。相继淘汰了小牛队和火箭队后,超音速队与湖人相遇到西部决赛,但是被湖人剃了光头。

经历了80年代的超落后,超音速在90年代重新走上强队之路。1991-1992赛季,乔治-卡尔成为主教练,超音速再次在西部露出头角。1995-1996赛季,超音速自1979年来再次闯进总决赛,但是在乔丹的公牛队面前,功亏一篑。公牛队赢了头三场,超音速连扳两局,但第6战还是败下阵来。坎普、佩顿和主教练卡尔都参加了当年的全明星赛。

接下来的1997和1998赛季,超音速仍然强劲,分别在常规赛取得了57胜和61胜,但是未能再进总决赛。1998-1999残缺不全的赛季,超音速25胜25负,8年来第一次未能进入季后赛。但一个赛季后,超音速又重新回到季后赛轨道。

新世纪开始后,超音速不断调整阵容。佩顿仍是球队的核心,但是引入了一批新人。2001-2002赛季,佩顿每场得22.1分9.0次助攻,他也第8次成为全明星球员,超过此前超音速球员西克马(Silkma)的纪录。

2003年,佩顿离开效力12年之久西雅图,换来雷阿伦。但球队战绩始终难以更上一层楼。

2007年夏天,超音速先后送走了球队当家球星雷-阿伦和刘易斯,并在选秀第二顺位选中凯文-杜兰特,这位号称历史最强榜眼秀的小前锋将肩负起振兴超音速的重任。

2008年夏天,西雅图超音速将主场搬迁至俄克拉荷马州俄克拉荷马市,命名为俄克拉荷马雷霆队。超音速队从此成为了历史。

关于美国的雷暴天气!

美国半数地区遭遇高温天气,多地气温逼近或超过历史同期纪录。美国官员认为,近日高温导致至少5名老人丧生。

依据美国国家气象局数据,美国南部、东部和中西部大部分地区气温超过32摄氏度,高于往年同期水平。截至9日,首都华盛顿和巴尔的摩市的最高气温达到37.2摄氏度,刷新1999年以来同期纪录。费城气温高至36.1摄氏度,打破2008年创下的35摄氏度的同期纪录。在新泽西州大西洋城,高温升至36.6摄氏度,与1999年同期高温纪录持平。

《洛杉矶时报》报道,伊利诺伊州芝加哥市本周气温创下34年来新高,9日下午预计达到35摄氏度。费城气温本周可能逼近37.7摄氏度,挑战1933年6月9日创下的36.6摄氏度纪录。

在俄克拉何马州,气温本月以来四度攀升至40摄氏度。

田纳西州、马里兰州和威斯康星州5名老人丧生。当地官员认为,高温是致死原因。

气候预测中心预计,包括路易斯安那州、密西西比州和亚拉巴马州在内的中南部地区接下来数日仍将遭高温炙烤,东部新泽西州和纽约州也将继续为高温笼罩。

另一方面,芝加哥市将迎来冷锋过境,气温暂降。气象学家预计,冷锋10日夜将为芝加哥居民带来“凉意”。

《洛杉矶时报》报道,伊利诺伊州、印第安纳州和威斯康星州预计不久后迎来雷暴天气。